LATENT: Low-Latency Anomaly Tracking in National Electricity Time-Series Using Hybrid LSTM-Regression Architectures – A Case Study of Bangladesh’s PGCB Grid
DOI:
https://doi.org/10.65405/cv5t9g68Keywords:
Low-latency anomaly detection, hybrid LSTM-regression, unsupervised grid monitoring, PGCB, loadshedding prediction, edge-deployable AI, Bangladesh power grid, Global South energy resilienceAbstract
The operational instability of national power grids in rapidly developing economies exemplified by Bangladesh’s recurrent loadshedding despite rising generation capacity demands anomaly detection systems that are not only accurate but also deployable under severe computational and data constraints. To address this unmet need, this research propose LATENT: a novel unsupervised framework that uniquely fuses lightweight Long Short-Term Memory (LSTM) forecasting with regression-based residual uncertainty quantification to enable real-time anomaly surveillance using only coarse-grained, hourly telemetry from the Power Grid Company of Bangladesh (PGCB). Unlike existing deep learning approaches that rely on high-frequency sensors or incur prohibitive latency (>500 ms), LATENT operates exclusively on publicly available generation, demand, as well as loadshedding records requiring no labeled anomalies and achieves 98.7% precision and 96.4% recall with inference latency under 120 ms on edge-compatible hardware. LATENT provides proactive early warnings up to 3 hours before major outages, validated against historical grid logs, while maintaining a model footprint below 8 MB for direct deployment on legacy Remote Terminal Units (RTUs). In addition, by reconciling high accuracy with extreme computational frugality, this work establishes the first practical blueprint for scalable, real-time grid resilience in data-scarce, resource-constrained environments offering a transformative pathway for Global South utilities striving to modernize without costly infrastructure overhauls.
Downloads
References
[1] BPDB Annual Report, 2023.
[2] Chen et al., “Anomaly Detection in Power Systems: A Survey,” IEEE Trans. Smart Grid, 2021.
[3] Zhang et al., “Edge-Based Grid Monitoring,” Energy Informatics, 2022.
[4] UCI ML Repository: PGCB Hourly Generation Dataset. https://archive.ics.uci.edu/dataset/1175/pgcb+hourly+generation+dataset+
[5] Nimma, D., Khan, S. A., Chhabra, G., Parida, P., Kiran, A., & Bala, B. K. (2024, December). Predictive Resilience Framework for Energy Management Systems in Next-Generation Smart Grids Using a Hybrid LSTM-ARIMA Model. In 2024 IEEE 2nd International Conference on Innovations in High Speed Communication and Signal Processing (IHCSP) (pp. 1-6). IEEE.
[6] Iqbal, M. R. (2022). Time Series Analysis and Improved Deep Learning Model for Electricity Price Forecasting (Master's thesis, University of Malaya (Malaysia)).
[7] Singhal, D., Ahuja, L., & Seth, A. (2024). Forecasting Smart Grid Stability Using a Hybrid CNN Bi-LSTM Approach. SN Computer Science, 5(5), 539.
[8] Mubarak, H., Abdellatif, A., Ahmad, S., Islam, M. Z., Muyeen, S. M., Mannan, M. A., & Kamwa, I. (2024). Day-Ahead electricity price forecasting using a CNN-BiLSTM model in conjunction with autoregressive modeling and hyperparameter optimization. International Journal of Electrical Power & Energy Systems, 161, 110206.
[9] Yu, J., Li, X., Yang, L., Li, L., Huang, Z., Shen, K., ... & Du, S. (2024). Deep learning models for PV power forecasting. Energies, 17(16), 3973.
[10] Awad, H., Nassar, Y. F., Hafez, A., Sherbiny, M. K., & Ali, A. F. (2022). Optimal design and economic feasibility of rooftop photovoltaic energy system for Assuit University, Egypt. Ain Shams Engineering Journal, 13(3), 101599.
[11] Nassar, Y., Latiwash, I., & Abubaker, A. (2025). Performance analysis and sizing optimization of a utility scale stand-alone renewable energy PV/Battery storage system for urban zones. University of Zawia Journal of Engineering Sciences and Technology, 3(2), 261-275.
[12] Abduallah, A., Nassar, Y., Mohammed, S., & Ghatus, M. (2025). Integrating Electricity Sub-Grid with Pumped Hydropower Storage System for Grid Stability and Sustainability. Wadi Alshatti University Journal of Pure and Applied Sciences, 322-332.
[13] Nassar, Y. F., El-Khozondar, H. J., & Fakher, M. A. (2025). The role of hybrid renewable energy systems in covering power shortages in public electricity grid: An economic, environmental and technical optimization analysis. Journal of Energy Storage, 108, 115224.
[14] Alkhazmi, A., Nassar, Y., El-Khozondar, H., Rekik, S., Hadi, H., Elmnifi, M., ... & Abuhelwa, M. (2026). Design and Analysis of PV Solar Street Lighting systems in Remote Areas: A Case Study. Wadi Alshatti University Journal of Pure and Applied Sciences, 1-14.
[15] Salim, E., Abubaker, A., Ahmed, B., & Nassar, Y. (2025). A Brief Overview of Hybrid Renewable Energy Systems and Analysis of Integration of Isolated Hybrid PV Solar System with Pumped Hydropower Storage for Brack city-Libya. Wadi Alshatti University Journal of Pure and Applied Sciences, 152-167.
[16] Ahmad, S., Agrira, A., & Nassar, Y. (2025). The impact of loss of power supply probability on design and performance of wind/pumped hydropower energy storage hybrid system. Wadi Alshatti University Journal of Pure and Applied Sciences, 52-62.
[17] Aqila, A., Nassar, Y., El-Khozondar, H., & Suliman, S. (2025). Design of Hybrid Renewable Energy System (PV/Wind/Battery) Under Real Climatic and Operational Conditions to Meet Full Load of the Residential Sector: A Case Study of a House in Samno Village–Southern Region of Libya. Wadi Alshatti University Journal of Pure and Applied Sciences, 168-181.
[18] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
[19] Malhotra, P., et al. (2016). LSTM-based Encoder-Decoder for Multivariate Anomaly Detection. arXiv preprint arXiv:1607.00148.
[20] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. (Chapter 3: Linear Models for Regression)
[21] Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed.). OTexts. https://otexts.com/fpp3/
[22] Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey. ACM Computing Surveys, 54(2), 1–38. https://doi.org/10.1145/3439950
[23] Hundman, K., et al. (2018). Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding. Proceedings of the IEEE Aerospace Conference. https://doi.org/10.1109/AERO.2018.8396403
[24] Jacob, B., et al. (2018). Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2704–2713.
[25] Zhang, Y., et al. (2022). Edge-Based Grid Monitoring Using Lightweight Deep Learning. Energy Informatics, 5(1), 1–18. https://doi.org/10.1186/s42162-022-00203-5.
[26] Islam, M. T., Turja, S. A., & Habib, A. (2025). PGCB Hourly Generation Dataset (Bangladesh). UCI Machine Learning Repository. https://doi.org/10.24432/C59P6V
[27] Dalla, L. O. F. B. (2020). IT security Cloud Computing. In (2020 IT security Cloud Computing Conference (ISCC) (pp. 1-8). IEEE.
[28] Nahid, F. A., Chowdhury, H. M., & Jahangir, M. N. (2025). Machine Learning Techniques for Demand Forecasting in the Electricity Sector. Forecasting Methods for Renewable Power Generation, 131-172.
[29] Dalla, L. O. F. B. (2020). The Influence of hospital management framework by the usage of Electronic healthcare record to avoid risk management (Department of Communicable Diseases at Misurata Teaching Hospital: Case study). Nature Communications, 12(5), 7685.
[30] Baul, A., Sarker, G. C., Sikder, P., Mozumder, U., & Abdelgawad, A. (2024). Data-driven short-term load forecasting for multiple locations: An integrated approach. Big data and cognitive computing, 8(2), 12.
[31] Dalla, L. O. B., Karal, Ö., Degirmenci, A., EL-Sseid, M. A. M., Essgaer, M., & Alsharif, A. (2025). Edge Intelligence for Real-Time Image Recognition: A Lightweight Neural Scheduler Via Using Execution-Time Signatures on Heterogeneous Edge Devices. Journal homepage: https://sjphrt. com. ly/index. php/sjphrt/en/index, 1(2), 74-85.
[32] Alsharif, A., Ibrahim, A. A., Waheshi, Y. A. A., Alsharif, M., Alhoudier, T. E., Esmail, E. M. A., & Dalla, L. O. F. B. (2025). An Analysis of Power Sector Investment by Technology in the Middle East and North Africa. African Journal of Academic Publishing in Science and Technology (AJAPST), 1(4), 25-39.
[33] Hossain, A., Ridoy, M. H., Chowdhury, B. R., Hossain, M. N., Rabbi, M. N. S., Ahad, M. A., ... & Hasan, M. S. (2024). Energy Demand Forecasting Using Machine Learning: Optimizing Smart Grid Efficiency with Time-Series Analytics. Journal of Environmental and Agricultural Studies, 5(1), 26-42.
[34] Dalla, L. O. F. B., & AHMAD, T. M. A. (2024). IMPROVE DYNAMIC DELIVERY SERVICES USING ANT COLONY OPTIMIZATION ALGORITHM IN THE MODERN CITY BY USING PYTHON RAY FRAMEWORK.
[35] Anik, M. F., Jahan, A. S. M., & Shamim, M. A. M. (2024). Time-based Scheme for Demand Side Management of ML-based Forecasted Load Data using an Optimization Algorithm (Doctoral dissertation, Department of Electrical and Elecrtonics Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh).
[36] Ben Dalla, L., Medeni, T. M., Zbeida, S. Z., & Medeni, İ. M. (2024). Unveiling the Evolutionary Journey based on Tracing the Historical Relationship between Artificial Neural Networks and Deep Learning. The International Journal of Engineering & Information Technology (IJEIT), 12(1), 104-110.
[37] Degirmenci, A., & Karal, O. (2022). Efficient density and cluster based incremental outlier detection in data streams. Information Sciences, 607, 901-920.
[38] Apaydın, M., Yumuş, M., Değirmenci, A., & Karal, Ö. (2022). Evaluation of air temperature with machine learning regression methods using Seoul City meteorological data. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 28(5), 737-747.
[39] Yalman, Y., Uyanık, T., Atlı, İ., Tan, A., Bayındır, K. Ç., Karal, Ö., ... & Guerrero, J. M. (2022). Prediction of voltage sag relative location with data-driven algorithms in distribution grid. Energies, 15(18), 6641.
[40] Yumuş, M., Apaydın, M., Değirmenci, A., & Karal, Ö. (2020). Missing data imputation using machine learning based methods to improve HCC survival prediction. In 2020 28th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
[41] Tokgöz, N., Değirmenci, A., & Karal, Ö. (2024). Machine Learning-Based Classification of Turkish Music for Mood-Driven Selection. Journal of Advanced Research in Natural and Applied Sciences, 10(2), 312-328.
[42] Abuqila, M., Nassar, Y., & Nyasapoh, M. (2025). Estimation of the storage capacity of electric vehicle batteries under real weather and drive-mode conditions: A case study. Wadi Alshatti University Journal of Pure and Applied Sciences, 58-71.
[43] El-Khozondar, H., El-Khozondar, R., Nassar, Y., Asfour, A., Albardawil, M., El-Zesty, M., ... & Ali, A. (2025). Economic and Environmental Implications of Solar Energy Street Lighting in Urban Regions: A Case Study. Wadi Alshatti University Journal of Pure and Applied Sciences, 142-151.
[44] El-Khozondar, H., Andeef, M., Nassar, Y., El-Khozondar, R., & Awad, H. (2026). Feasibility of Concentrating Solar Power as a Solar Fuel for Electrical Power Stations: A Case Study of Ubari Gas-Power Station in Libya. Wadi Alshatti University Journal of Pure and Applied Sciences, 56-69.
[45] Dalla, L. B., Karal, Ö., Mhamed, E. S., & Alsharif, A. (2026). An IoT-Enabled, THD-Based Fault Detection and Predictive Maintenance Framework for Solar PV Systems in Harsh Climates: Integrating DFT and Machine Learning for Enhanced Performance and Resilience. Wadi Alshatti University Journal of Pure and Applied Sciences, 41-55.
[46] Miah, M. S. U., Islam, M. I., Islam, S., Ahmed, A., Rahman, M. M., & Mahmud, M. (2024). Sustainability-driven hourly energy demand forecasting in bangladesh using bi-lstms. Procedia Computer Science, 236, 41-50.
[47] Hossain, A., Ridoy, M. H., Chowdhury, B. R., Hossain, M. N., Rabbi, M. N. S., Ahad, M. A., ... & Hasan, M. S. (2024). Energy Demand Forecasting Using Machine Learning: Optimizing Smart Grid Efficiency with Time-Series Analytics. Journal of Environmental and Agricultural Studies, 5(1), 26-42.
[48] Sabbir, S., Karmakar, S., Ghosh, A., Jumaniyozov, F., Akhmedov, S., Aziz, M. T., & Mahmud, T. (2025, July). A Novel Hybrid Approach for Load Forecasting: Multi-Head Attention Integrated LCG Model with Statistical Outlier Management. In 2025 International Conference on Quantum Photonics, Artificial Intelligence, and Networking (QPAIN) (pp. 1-6). IEEE.
[49] Cascone, L., Sadiq, S., Ullah, S., Mirjalili, S., Siddiqui, H. U. R., & Umer, M. (2023). Predicting household electric power consumption using multi-step time series with convolutional LSTM. Big Data Research, 31, 100360.
[50] Zhang, Z. (2024). Deep analysis of time series data for smart grid startup strategies: A transformer-lstm-pso model approach. arXiv preprint arXiv:2408.12129.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









