Temporal Intelligence and Algorithmic Equity: A Multi-Phase Framework for Predictive Student Success in Higher Education
DOI:
https://doi.org/10.65405/f0xx5p02Keywords:
Predicting, Students Dropout, Academic Success, Machine learning , Academic Qualification SkillsAbstract
This literature review presents a systematic comparative analysis of machine learning models for predicting student dropout and academic success, leveraging the widely used Predict Students’ Dropout and Academic Success dataset from the Polytechnic Institute of Portalegre. The core novelty lies in synthesizing and critically evaluating four complementary research paradigms baseline ensemble modeling, phased temporal prediction, fairness-aware ranking under uncertainty, and multi-stakeholder learning analytics to advance a holistic framework for ethical and effective educational intervention. Unlike prior surveys that focus narrowly on algorithmic accuracy, this work emphasizes the interplay between predictive performance, temporal feasibility, class imbalance handling, algorithmic fairness, and institutional integration. A key contribution is the identification of the end of the first semester (S1) as the optimal intervention window, where early academic indicators (e.g., approved curricular units, semester grades) yield the highest predictive power (F1 = 0.745) before data attrition from dropout erodes model efficacy in later phases. The review further contributes by advocating for uncertainty-aware, randomized ranking systems that guarantee stability and multigroup fairness addressing critical ethical gaps in high-stakes educational decision-making. Finally, it calls for a shift from student-centric risk scoring toward multi-level analytics that simultaneously empower learners, instructors, and administrators. This integrative approach offers significant engineering and pedagogical value: it provides institutions with a principled, evidence-based roadmap for deploying robust, interpretable, and ethically grounded predictive systems that not only forecast outcomes but actively enhance students’ academic qualification skills through timely, personalized support.
Downloads
References
Achterberg, J., Haas, M., van Dijk, B., & Spruit, M. (2025). Fidelity-agnostic synthetic data generation improves utility while retaining privacy. Patterns.
Adu-Twum, H. T., Sarfo, E. A., Nartey, E., Adesola Adetunji, A., Ayannusi, A. O., & Walugembe, T. A. (2024). Role of advanced data analytics in higher education: Using machine learning models to predict student success. Journal of Data Science and Artificial Intelligence, 3(1), 8.
Agila, A. A. A. (2024). Diabetes Prediction Using a Support Vector Machine (SVM) and visualize the results by using the K-means algorithm* Corresponding author:* Llahm Omar Faraj Ben Dalla. Tarik Milod Alarbi Ahmad, 2.
Andreatos, A., & Leros, A. (2023). Can Oral Grades Predict Final Examination Scores? Case Study in a Higher Education Military Academy. Analytics, 2(4), 836-852.
Arora, D. (2023). Predicting Students Academic Success and Dropout Using Supervised Machine Learning. International Journal of Scientific Study, 11(6), 72-78.
Arwade, G., & Olafsson, S. (2025). Learning ensembles of interpretable simple structure. Annals of Operations Research, 1-29.
Beseiso, M. (2025). Enhancing student success prediction: A comparative analysis of machine learning technique. TechTrends, 69(2), 372-384.
Ben Dalla L., Medeni T.D., Medeni I.T., Ulubay M. (2024). Enhancing Healthcare Efficiency at Almasara Hospital: Distributed Data Analysis and Patient Risk Management. Economy: strategy and practice. 2024;19(4):54-72. https://doi.org/10.51176/1997-9967-2024-4-54-72
Choi, J., Karumbaiah, S., & Matayoshi, J. (2025). Bias or Insufficient Sample Size? Improving Reliable Estimation of Algorithmic Bias for Minority Groups. In Proceedings of the 15th International Learning Analytics and Knowledge Conference (pp. 547-557).
Dalla, L. O. B., Karal, Ö., & Degirmenciyi, A. (2025). Leveraging LSTM for Adaptive Intrusion Detection in IoT Networks: A Case Study on the RT-IoT2022 Dataset implemented On CPU Computer Device Machine.
Dalla, L. O. F. B. (2020). E-mail: mohmdaesed@ gmail. com E-mail: selflanser@ gmail. com Phone:+ 218945780716.
Dalla, L. O. B., Karal, Ö., Degirmenci, A., & Ali, M. يحصلا فرصلا هايم ةجلاعم تايلمع نيسحت تايمزراوخ لوح تايبدلأل ةلماش(2025). ةعجارم.
Dalla, L. O. F. B., & Ahmad, T. M. A. (2023). Heart Disease Prediction Via Using Machine Learning Techniques with Distributed System and Weka Visualization. Journal of Southwest Jiaotong University, 58(4), 322-333.
Devic, S., Korolova, A., Kempe, D., & Sharan, V. (2024). Stability and Multigroup Fairness in Ranking with Uncertain Predictions. arXiv preprint arXiv:2402.09326.
Dalla, L. O. F. B. (2020). IT security Cloud Computing.
Devic, S., Korolova, A., Kempe, D., & Sharan, V. (2024). Stability and multigroup fairness in ranking with uncertain predictions. arXiv preprint arXiv:2402.09326.
Donnelly, J., Katta, S., Borgonovo, E., & Rudin, C. (2025). Doctor Rashomon and the UNIVERSE of Madness: Variable Importance with Unobserved Confounding and the Rashomon Effect. arXiv preprint arXiv:2510.12734.
Dyulicheva, Y. Y. (2024). Применение учебной аналитики в высшем образовании: датасеты, методы и инструменты. Высшее образование в России, 33(5), 86–111.
Erickson, N., Purucker, L., Tschalzev, A., Holzmüller, D., Desai, P. M., Salinas, D., & Hutter, F. (2025). Tabarena: A living benchmark for machine learning on tabular data. arXiv preprint arXiv:2506.16791.
https://archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success
Islam, M. M., Sojib, F. H., Mihad, M. F. H., Hasan, M., & Rahman, M. (2025). The integration of explainable ai in educational data mining for student academic performance prediction and support system. Telematics and Informatics Reports, 100203.
Jain, A., Dubey, A. K., Khan, S., Panwar, A., Alkhatib, M., & Alshahrani, A. M. (2025). A PSO weighted ensemble framework with SMOTE balancing for student dropout prediction in smart education systems. Scientific Reports, 15(1), 17463.
Karczmarek, P., Dolecki, M., Powroznik, P., Łagodowski, Z. A., Gregosiewicz, A., Gałka, Ł., ... & Jonak, K. (2023). Quadrature-inspired generalized Choquet integral in an application to classification problems. IEEE Access, 11, 124676-124689.
Karal, Ö., & Dalla, L. O. F. B. (2025). Lung Nodule Characterization in CT Scans Using Hybrid 3D Attention U-Net Segmentation and Transfer Learning-Based Classification Approach.
Karczmarek, P., Gregosiewicz, A., Łagodowski, Z. A., Dolecki, M., Gałka, Ł., Powroźnik, P., ... & Jonak, K. (2024). Analysis of smooth and enhanced smooth quadrature-inspired generalized Choquet integral. Fuzzy Sets and Systems, 483, 108926.
Kouloumpris, E., & Vlahavas, I. (2025). Markowitz random forest: Weighting classification and regression trees with modern portfolio theory. Neurocomputing, 620, 129191.
Li, W., Zhang, M., Zhang, L., & Liu, J. (2023). Integrated Private Data Trading Systems for Data Marketplaces. arXiv preprint arXiv:2307.16317.
Li, Y. Z., Ng, K. H., Khor, K. C., & Lim, Y. H. (2024). Predicting Undergraduate Academic Success with Machine Learning Approaches. In International Conference on Soft Computing and Data Mining (pp. 144-153). Cham: Springer Nature Switzerland.
Lux, N., Mandal, C., Decker, J., Luboeinski, J., Drewljau, J., Meisel, T., ... & Kunkel, J. (2024). HPC-AI benchmarks-a comparative overview of high-performance computing hardware and AI benchmarks across domains. J. Artif. Intell. Robot., 1, 2.
Martins, M. V., Baptista, L., Machado, J., & Realinho, V. (2023). Multi-Class Phased Prediction of Academic Performance and Dropout in Higher Education. Applied Sciences, 13(8), 4702.
Martins, M. V., Baptista, L., Machado, J., & Realinho, V. (2023). Multi-class phased prediction of academic performance and dropout in higher education. Applied Sciences, 13(8), 4702.
Martins, M. V., Tolledo, D., Machado, J., Baptista, L. M., & Realinho, V. (2021). Early prediction of student’s performance in higher education: A case study. In World Conference on Information Systems and Technologies (pp. 166–175). Springer.
Mustofa, S., Emon, Y. R., Mamun, S. B., Akhy, S. A., & Ahad, M. T. (2025). A novel AI-driven model for student dropout risk analysis with explainable AI insights. Computers and Education: Artificial Intelligence, 8, 100352.
Realinho, V., Machado, J., Baptista, L., & Martins, M. V. (2022). Predicting Student Dropout and Academic Success. Data, 7(11), 146.
Realinho, V., Machado, J., Baptista, L., & Martins, M. V. (2022). Predicting student dropout and academic success. Data, 7(11), 146.
Ridwan, A., Priyatno, A. M., & Ningsih, L. (2024). Predict Students' Dropout and Academic Success with XGBoost. Journal of Education and Computer Applications, 1(2), 1-8.
Romero, S., & Liao, X. (2025). Statistical and machine learning models for predicting university dropout and scholarship impact. PloS one, 20(6), e0325047.
Santos, S. O., Skiarski, A., García-Núñez, D., Lazzarini, V., Moral, R. D. A., Galvan, E., ... & Nepomuceno, E. (2024). Green machine learning: Analysing the energy efficiency of machine learning models. In 2024 35th Irish Signals and Systems Conference (ISSC) (pp. 1-6). IEEE.
Tang, Z., Jain, A., & Colina, F. E. (2024). A Comparative Study of Machine Learning Techniques for College Student Success Prediction. Journal of Higher Education Theory & Practice, 24(1).
Tang, Z., von Seekamm, K., Colina, F. E., & Chen, L. (2025). Enhancing Student Retention with Machine Learning: A Data-Driven Approach to Predicting College Student Persistence. Journal of College Student Retention: Research, Theory & Practice, 15210251251336372.
Tito, A. E. A., Condori, B. O. H., & Vera, Y. P. (2023). Análisis comparativo de Técnicas de Machine Learning para la predicción de casos de deserción universitaria. RISTI-Revista Ibérica de Sistemas e Tecnologias de Informação, (51), 84-98.
Villar, A., & de Andrade, C. R. V. (2024). Supervised machine learning algorithms for predicting student dropout and academic success: a comparative study. Discover Artificial Intelligence, 4(1), 2.
Wang, H., Li, J., & Zhu, G. (2023). A data feature extraction method based on the NOTEARS causal inference algorithm. Applied Sciences, 13(14), 8438.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








