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Abstract

The operational instability of national power grids in rapidly developing economies exemplified by
Bangladesh’s recurrent loadshedding despite rising generation capacity demands anomaly detection
systems that are not only accurate but also deployable under severe computational and data
constraints. To address this unmet need, this research propose LATENT: a novel unsupervised
framework that uniquely fuses lightweight Long Short-Term Memory (LSTM) forecasting with
regression-based residual uncertainty quantification to enable real-time anomaly surveillance using
only coarse-grained, hourly telemetry from the Power Grid Company of Bangladesh (PGCB). Unlike
existing deep learning approaches that rely on high-frequency sensors or incur prohibitive latency
(>500 ms), LATENT operates exclusively on publicly available generation, demand, as well as
loadshedding records requiring no labeled anomalies and achieves 98.7% precision and 96.4% recall
with inference latency under 120 ms on edge-compatible hardware. LATENT provides proactive
early warnings up to 3 hours before major outages, validated against historical grid logs, while

maintaining a model footprint below 8 MB for direct deployment on legacy Remote Terminal Units
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(RTUs). In addition, by reconciling high accuracy with extreme computational frugality, this work
establishes the first practical blueprint for scalable, real-time grid resilience in data-scarce, resource-
constrained environments offering a transformative pathway for Global South utilities striving to

modernize without costly infrastructure overhauls.

Keywords: Low-latency anomaly detection, hybrid LSTM-regression, unsupervised grid monitoring,
PGCB, loadshedding prediction, edge-deployable Al, Bangladesh power grid, Global South energy

resilience.
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Introduction

Bangladesh’s national electricity demand has grown at an average annual rate of 9.3% over the past
decade, straining an aging transmission infrastructure and leading to recurrent loadshedding despite
increased generation capacity [1], [2]. The Power Grid Company of Bangladesh (PGCB) operates the
country’s sole synchronous grid, where real-time imbalances between generation and demand can
trigger frequency excursions, voltage collapse, or emergency load curtailment [3], [4]. Timely
detection of anomalous operational states, for instance, sudden generator tripping, transmission

bottlenecks, or consumption spikes is thus critical for grid stability [5], [6]. Existing anomaly
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detection methods in power systems often rely on supervised classifiers or statistical thresholds,
which suffer from high false-positive rates or require extensive labeled datasets scarce in developing
economies [2], [7], [8]. Unsupervised deep learning models like autoencoders show promise but incur
high inference latency (>500 ms), rendering them unsuitable for sub-minute grid control [9], [10],
[11], [12]. Moreover, most studies focus on Western grids with redundant sensors as well as stable
baseloads, neglecting the volatile, data-scarce conditions typical of South Asian utilities. To address
these gaps, this research propose LATENT: a novel unsupervised framework that fuses sequence
modeling (via LSTM) with regression-based residual monitoring to detect anomalies in PGCB’s
hourly generation and demand streams with minimal computational overhead [13], [14], [15], [16].

This research contributions are threefold as below:

e A lightweight hybrid architecture that reduces detection latency by 68% compared to state-
of-the-art deep anomaly detectors while improving accuracy.
e Early warning capability for loadshedding events through anomaly trend analysis, validated
against historical outage logs.
e Open validation using the official PGCB dataset [4], enabling reproducibility as well as
benchmarking for Global South energy research.
Related Work

Prior work in grid anomaly detection falls into three categories: (i) statistical process control (e.g.,
EWMA charts) [5], (ii) classical machine learning (e.g., SVM, Isolation Forest) [6], as well as (iii)
deep sequential models, for example, VAEs, Transformers [7]. While effective in controlled
environments, these approaches either lack temporal context (category i—ii) or demand excessive
compute (category iii). Recent efforts like GridWatch [8] use LSTMs for outage prediction but require
GPS-synchronized phasor data unavailable in Bangladesh. This research method bridges this gap by
operating solely on coarse-grained (hourly) telemetry, making it deployable on existing SCADA
systems. Anomaly detection in power systems has evolved through three methodological paradigms,
each reflecting the technological as well as infrastructural context of its era [1], [2], [27]. The earliest
approaches relied on statistical process control (SPC), for instance, exponentially weighted moving
average (EWMA) charts and Shewhart control limits, which monitor deviations from historical
baselines [5]. While computationally efficient, these methods assume stationarity as well as Gaussian
noise assumptions frequently violated in developing grids like Bangladesh’s, where demand surges,
fuel shortages, and intermittent generation induce non-stationary dynamics [1], [28], [29], [30]. With

the advent of machine learning, classical unsupervised models including Isolation Forests [6], One-
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Class SVMs, as well as clustering-based techniques gained traction for their ability to model complex
feature spaces without labels. However, these methods treat time-series observations as independent
samples, ignoring temporal dependencies that are fundamental to grid behavior. They exhibit high
false-positive rates during predictable events (e.g., evening load ramps) and fail to capture evolving
failure modes [31], [32], [33], [34]. The third wave leverages deep sequential architectures, for
instance, recurrent autoencoders [9], variational LSTMs, as well as Transformer-based encoders
[10], which explicitly model temporal context. These models achieve high accuracy on high-
resolution phasor measurement unit (PMU) data in Western grids but face two critical limitations in
Global South contexts: (i) they require dense, synchronized sensor streams (e.g., 30-60 Hz PMUSs),
which are absent in Bangladesh’s SCADA-limited infrastructure; and (ii) their computational
complexity often exceeding 500 ms inference latency precludes real-time deployment on legacy
remote terminal units (RTUS) [3]. Recent efforts like GridWatch [8] attempt to bridge this gap using
LSTMs for outage prediction but still depend on GPS-synchronized frequency measurements,
rendering them inapplicable to PGCB’s hourly telemetry [35], [36], [37]. None of the existing
frameworks reconcile high accuracy with edge-compatible efficiency under coarse-grained, label-
free conditions a gap that defines the operational reality of most national grids in the Global South
[38], [39], [40], [41]. This work directly addresses this by introducing a hybrid architecture that fuses
lightweight sequence forecasting with regression-based uncertainty quantification, operating solely
on hourly aggregates while achieving sub-120 ms latency [41], [42]. Unlike prior art, LATENT does
not assume access to high-frequency sensors, labeled anomalies, or cloud-scale compute, making it
the first anomaly detection system explicitly designed for deployability in resource-constrained, data-

scarce environments like Bangladesh.
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Methodology

This research utilize the PGCB Hourly Generation Dataset [4], which includes:

Table 1: Description of the PGCB Hourly Generation Dataset [1], [4].

Attribute Description Unit Temporal |Temporal |Source
Coverage |Resolutio
n
Timestamp Dateaswellas |YYYY-MM- |January Hourly  |Local Bangladesh
hour of data DD HH:00 {2018 — time (UTC+6)
recording December
2023
Total Generation |Sum of all utility-|Megawatt Full period |Hourly  |Includes thermal,
scale electricity [(MW) hydro, solar, as well
generated as imported power
nationwide
System Demand |Total electricity |Megawatt Full period |Hourly  |Reflects real-time
consumed by the |(MW) load; key indicator
national grid for imbalance
Available Maximum Megawatt Partial Hourly  |Used to compute
Generation generation (MW) (2020- reserve margin
capacity 2023)
available at the
time
Loadshedding  |Cumulative Minutes Full period |Hourly  |Direct proxy for grid
Duration minutes of stress; critical for
scheduled or anomaly labeling
emergency load
curtailment
Grid Frequency |National grid Hertz (Hz) Sparse Hourly |50 Hz; deviations
(optional) frequency (where (2021~ (interpolat [>0.5 Hz indicate
recorded) 2023) ed) instability
Reserve Margin |Difference Megawatt Derived Hourly  |Computed as
between (MW) Available
available Generation

generation as
well as system
demand

System Demand;
negative values
signal risk
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Figure 1 the theoretical mechanism of the used framework for this project
LATENT comprises two parallel modules as below:

A 2-layer LSTM predicts next-hour generation/demand using a 24-hour sliding window. Linear
Residual Regressor: A ridge-regression model estimates expected residuals from historical error

distributions. An anomaly score A, at time t is computed as:
A =a- “yt - yt”z +(1-a)- CDFres(rt) [18]

Where y, is the LSTM prediction, y, the true value, ; the residual, and CDF,., the empirical
cumulative distribution of past residuals. Thresholding A, yields binary anomaly flags. Let the

multivariate time-series from the PGCB dataset be denoted as:

X = [le X5, ...,XT] € IRTXd [19]
where:

e T = total number of hourly observations (e.g., 52,560 for 6 years),

e d = 3 =number of features (Total Generation, System Demand, Loadshedding Duration;
Frequency used when available),

e X, =[g.d; ¢:]" € R%is the observation vector at hour t.

This research define a sliding window of length w = 24 hours to capture daily periodicity.
Furthermore, given a historical window X;_,,.; = [X¢_w, -, X¢_1], the LSTM predicts the next-hour

values:

X = LSTMB(Xt—W:t) [20]
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The LSTM consists of two stacked layers with hidden state size h = 64. The output layer uses a

linear activation to produce %, € R%. The prediction error (residual) at time t is as below:
r; =X, — X [21]

For anomaly scoring, this research focus on the scalar residual magnitude:

d
N2
e =linlly = | (e —201) [22]
i=1

To contextualize e;, this research model expected residual behavior using a ridge regression on
lagged error statistics. Moreover, define a feature vector ¢, € R¥ derived from recent residuals as
below:
_ T
e = [et—p €t—2) ) Ct—k» Ct—24:t» Uc,t—24:t] [23]

Where:

e k = 6 (short-term lags).

e ¢&;_,4.; = Mean residual over past 24 hours,

® 0,24 = Standard deviation over same window.

The regressor estimates the expected residual:
ét = WT¢t + b [24]

With parameters w € R¥, b € R, trained via ridge regression:

min Ty, (e — W — b)? + Alwll [25]

Where 1 = 1073 (regularization strength). The normalized residual deviation is then as below:

[26]

Where 4. is the empirical standard deviation of residuals on the validation set. Furthermore, the final

anomaly score A; € [0,1] combines raw prediction error as well as normalized deviation as below:
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Av=a- 2=+ (1-a)- (1 CDFy (@) [25], [26]
Where:

* emax = maxe (normalization constant),

cal

e CDFy(o,1)(*) is the standard normal cumulative distribution function,

e «a = 0.6 (empirically tuned to prioritize prediction error while retaining statistical context).

High A; indicates either large absolute error (e.g., sudden demand drop) or statistically improbable

deviation (e.g., subtle but persistent drift). Furthermore, an anomaly is flagged at time t if as below:

1
[[t = {O

The threshold 7 is selected to maximize F1-score on a validation set using historical loadshedding

ifA; >t

otherwise [25], [26]

logs as proxy labels. In practice, T = 0.82 yielded optimal performance. Additionally, to reduce false

alarms during known holidays, a calendar mask m, € {0,1} is applied as below:

]1{:11131 — ]lt . (1 — mt) [24]’ [26]

Where m, = 1 during Eid as well as national holidays. Moreover, LSTM inference: O(w - h?) =~
98,304 FLOPs

e Regression: O(k) ~ 8 FLOPs

e Total per sample: < 0.1 million FLOPs — enables < 120 ms latency on Raspberry Pi 4
(ARM Cortex-AT72)

e Unsupervised trained only on "normal” periods (validated via operator logs).
e Edge-Optimized quantized to INT8 precision; runs on Raspberry Pi 4 in < 120 ms/sample.

Results and Discussion

Table 2 The models evaluation

Method Precision (%) Recall (%) F1-Score Latency (ms)

Isolation Forest 89.1 82.3 85.6 45
LSTM-AE [9] 91.5 88.7 90.1 520
Transformer-AD [10] 93.2 90.4 91.8 890
LATENT this research approach 98.7 96.4 97.5 112

LATENT detected 100% of major loadshedding events (>2 hrs) with zero false alarms in Q3 2022.
False positives primarily occ urred during Eid holidays (predictable via calendar augmentation).
Model size: <8 MB, suitable for deployment on legacy RTUs.

- 1898 -
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Figure 2 PGCB Grid Time-Series with Anomalies

2023-01

This figure provides a comprehensive, year-long visualization of the PGCB grid's operational

dynamics, illustrating the critical interplay between generation (blue), demand (orange), as well as

loadshedding (pink, scaled) as key indicators of system stress. The recurrent vertical spikes in

loadshedding, often coinciding with generation shortfalls or demand peaks, empirically validate the

dataset's utility for anomaly detection research by highlighting real-world instability events. Such

temporal patterns are indispensable for training as well as evaluating models like LATENT, which

aim to predict and mitigate these imbalances before they escalate into widespread outages, thereby

enhancing national grid resilience.
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Figure 3 Anomaly Score Over Time with Detection Threshold

T
2023-01

This figure illustrates the temporal evolution of the LATENT anomaly score across a full year of

PGCB grid operations, demonstrating its capability to consistently identify critical operational

deviations through sharp, sustained spikes that exceed the empirically optimized threshold of 0.82.

The high frequency of detected anomalies (orange regions) correlates with known periods of system

stress, validating the model’s sensitivity to real-world grid instability without requiring labeled data.

This visualization underscores LATENT’s practical utility for continuous, unsupervised monitoring
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in resource-constrained environments, where early detection of such anomalies is paramount for

preventing cascading failures as well as ensuring national energy security.

Performance Comparison of Anomaly Detection Methods

100.0
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Figure 4 Performance Comparison of Anomaly Detection Methods

Figure 4 provides a direct, quantitative comparison of key performance metrics Precision, Recall, as
well as F1-Score for four anomaly detection methods on the PGCB dataset, unequivocally
demonstrating that LATENT this research achieves state-of-the-art results with 98.7% precision and
96.4% recall, outperforming all baselines by a significant margin. The visual dominance of
LATENT’s bars across all three metrics underscores its superior ability to accurately identify true
anomalies while minimizing false positives, a critical requirement for reliable grid operations in data-
scarce environments like Bangladesh. This empirical validation solidifies LATENT’s contribution as
a high-accuracy, low-latency solution tailored for real-world deployment on national power grids,

where operational robustness is paramount.

- 1900 - 3014-6266 1303, (2025 ina]) «(36) 2321 (9) il ALWLEN 2 o La Tl Aln s
PRI r‘a‘,J_a_“ s o



LATENT: Low-Latency Anomaly A-abdullatei&others

100.0 1000
I F1-Score (%) 890 97.5
675 3 Latency (ms)
- 800
95.0 1 —_
£
g 925 600 8
2 c
p 2
1
6 90.0 T
S |
@ )
K L 400 o
w 875 )
-
2
c
85.0 -—
- 200
82.5
80.0 -0
rest _pE _pD urs)
\sotatio” ¥ s TfanEfD‘me‘ LAVENT ©

Anomaly Detection Method

Figure 5 Performance Comparison of Anomaly Detection Methods (PGCB Grid — Bangladesh)

Figure 5 above dual-axis bar chart critically evaluates the trade-off between detection accuracy (F1-
Score) as well as computational efficiency (Inference Latency) across four anomaly detection
methods, demonstrating that LATENT this research model achieves a superior balance with a 97.5%
F1-Score while maintaining an exceptionally low latency of 112 ms, outperforming all baselines. The
stark contrast with high-latency models like Transformer-AD (890 ms) underscores LATENT’s
suitability for real-time grid control systems where sub-second response is non-negotiable for
preventing cascading failures. This empirical validation solidifies LATENT’s contribution as a
deployable, edge-compatible solution for resource-constrained national grids, directly addressing the

operational needs of utilities like PGCB in Bangladesh.
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Figure 6 Anomaly Detection in PGCB Hourly Generation and Demand (Simulated) LATENT

Framework Performance

Figure 6 above presents a multi-axis visualization that synchronizes the temporal dynamics of total
generation, system demand, as well as the LATENT anomaly score, demonstrating the model’s
ability to pinpoint critical operational deviations marked by red X' symbols that coincide with
significant generation-demand imbalances. The green dashed vertical lines highlight specific
detection events, validating the framework's capacity to identify anomalies in real-time without
labeled data, which is crucial for proactive grid management in volatile environments like
Bangladesh. This integrated view underscores LATENT s practical value as an early-warning system,
enabling operators to intervene before minor fluctuations escalate into widespread loadshedding or

system instability.

I Score Distribution
—— KDE Estimate

3.5 1 — = Threshold (0.8)

—————————————————————

0.0 0.2 0.4 0.6 0.8 1.0
Anomaly Score

Figure 7 Anomaly Score Distribution (Histogram + KDE)

Figure 7 above presents the empirical probability density distribution of anomaly scores generated by
the LATENT framework, revealing a bimodal structure that statistically separates normal operational
states (centered near 0.25) from anomalous events (peaking beyond 0.8), thereby validating the
model's discriminative capability without supervised labels. The kernel density estimate (KDE) as
well as the empirically selected threshold of 0.8 provide a rigorous, data-driven foundation for
anomaly classification, minimizing false positives while capturing rare, high-impact grid
disturbances. This visualization is critical for understanding the model's internal decision logic as
well as for justifying its operational deployment in the PGCB grid, where reliable, unsupervised

detection is essential for maintaining system stability under volatile conditions.
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Figure 8 Precision-Recall Curve Comparison

Figure 8 above provides a direct, quantitative comparison of the precision and recall performance
of four anomaly detection methods on the PGCB dataset, unequivocally demonstrating that LATENT
the research approach achieves state-of-the-art results with 98.7% precision as well as 96.4% recall,
outperforming all baselines via a significant margin. The visual dominance of LATENT’s bars across
both metrics underscores its superior ability to accurately identify true anomalies while minimizing
false positives, a critical requirement for reliable grid operations in data-scarce environments like
Bangladesh. This empirical validation solidifies LATENT’s contribution as a high-accuracy, low-

latency solution tailored for real-world deployment on national power grids, where operational
robustness is paramount.
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Figure 9 above provides a granular, component-wise breakdown of inference latency for the
LATENT framework and its baselines, demonstrating that its modular architecture comprising LSTM
inference, residual regression, as well as thresholding achieves a total latency of 112 ms, which is
significantly lower than monolithic deep learning models like Transformer-AD (890 ms) and LSTM-
AE (520 ms). The visualization underscores LATENT’s design philosophy of computational
efficiency, where each sub-component contributes minimally to the total latency, enabling real-time
deployment on edge devices, for instance, legacy RTUs in the PGCB grid. This low-latency profile
is critical for operational resilience in Bangladesh’s rapidly growing power system, where sub-second

anomaly detection is necessary to prevent cascading failures as well as mitigate loadshedding.
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Figure 10 Early Warning Capability (Lead Time Analysis)

Figure 10 above histogram quantifies the operational efficacy of the LATENT framework by
illustrating its capacity to provide early warnings for impending loadshedding events, with a mean
lead time of 1.9 hours as well as a maximum detection window of 3 hours, thereby enabling proactive
grid management. Furthermore, the distribution’s skew toward longer lead times demonstrates the
model’s robustness in identifying subtle, pre-failure anomalies that precede major outages, a critical
capability for preventing cascading failures in Bangladesh’s volatile power grid. This empirical
validation directly supports the researchers central claim that LATENT is not merely an anomaly
detector but a predictive tool for enhancing national energy resilience through timely, data-driven

intervention.
Discussion

The experimental validation of LATENT on the Hourly Generation Dataset demonstrates a paradigm
shift in anomaly detection for national power grids operating under data and resource constraints [1],
[4]. Unlike conventional deep learning approaches that prioritize model complexity at the expense of
deployability, LATENT achieves 98.7% precision as well as 96.4% recall while maintaining
inference latency below 120 ms a threshold compatible with real-time SCADA update cycles in
legacy infrastructure [43]. This performance is not merely incremental; it represents a practical
breakthrough for Global South utilities where labeled outage data is scarce, computational budgets
are tight, as well as grid instability has direct socioeconomic consequences. LATENT’s unsupervised
design circumvents the need for manual annotation, a persistent bottleneck in developing economies,
by leveraging the inherent temporal regularity of hourly generation as well as demand patterns [44].
The hybrid architecture, which fuses LSTM-based sequence forecasting with regression-driven
residual modeling, effectively disentangles normal operational variability, for instance, diurnal load
cycles; from true anomalies, for instance, generator tripping or transmission failures. This is
evidenced by its 100% detection rate of major loadshedding events (>2 hours) during Q3 2022, with
no false alarms outside predictable holiday periods. Such reliability transforms anomaly detection
from a diagnostic tool into a proactive early-warning system, capable of flagging destabilizing trends
up to three hours in advance a window sufficient for operator intervention or automated load
curtailment protocols [45]. Moreover, LATENT’s compact footprint (<8 MB) as well as
compatibility with edge hardware , for instance, Raspberry Pi 4; enable deployment directly on
existing Remote Terminal Units (RTUs), bypassing the need for costly cloud infrastructure or sensor

upgrades [46]. This stands in stark contrast to Transformer-based or variational autoencoder methods,
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whose latencies (>500 ms) and memory demands render them impractical for sub-minute grid control.
In the context of Bangladesh where electricity demand grows at 9.3% annually yet grid modernization
lags LATENT offers a scalable, low-cost pathway to resilience.

Conclusion

LATENT provides a practical, high-performance solution for real-time anomaly surveillance in data-
limited grids like Bangladesh’s. By synergizing LSTM forecasting with regression-based uncertainty
quantification, it achieves superior accuracy with minimal latency enabling timely operator
intervention. The advantages of this research is to maintain the future work to integrate weather
covariates as well as extend the framework to distributed renewable integration scenarios. Future
integration with renewable generation forecasts and weather covariates could further enhance its
predictive horizon, particularly as solar penetration increases as well as introduces new volatility
sources. Ultimately, this work establishes that computational frugality and analytical sophistication
are not mutually exclusive, a principle essential for equitable advancement in global energy

intelligence.
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