ON THE SOLUTIONS OF COUPLED SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS
DOI:
https://doi.org/10.65405/pafeeb28الكلمات المفتاحية:
Coupled system, Delay differential equation, Fixed point theoremالملخص
This paper studies the qualitative behavior of solutions to coupled systems of delay differential equations. Sufficient conditions for the existence and uniqueness of solutions are established using fixed point techniques in appropriate Banach spaces. examines the effect of coupling and time-delay parameters on the stability properties of the system. The results contribute to a deeper theoretical understanding of coupled delay differential systems and support their applicability in various mathematical and applied modeling contexts.
التنزيلات
المراجع
[1] A. Ambrosetti, E. Colorado and D. Ruiz, Multi-bump solutions to linearity coupled systems of nonlinear Schrödinger equations, Calc. var. Partial Differential Equations, 30, (2007), 85-112.
[2] T. M. Apostol, Mathematicl Analysis, 2nd edition, Addison-Weasley Publishing Company Inc, (1974).
[3] J. Banas and W. G. EL-Sayed, Solvability of functional and integral equation in some classes of integrable functions, Politechnik Rzeszowska, (1993).
[4] J. L. Bona, V. A. Douglis and D. E. Mitsotakis, Numericl solution of coupled-KDV systems of boussinesq equations, II. Generayion, interactions and stabilitu of generlized solitary waves, Vol. 14, (2005)
[5] J. L. Bona, M. Chen and J-C. Saut, Boussineseq equations and other system for small-amplitude long waves in non linear dispersive media, I. Derivation and linear Theory. J. Nonlinear sci., Vol. 12, (2002), 283-318.
[6] J. L. Bona, T. Colin and D. Lannes, Ling wave approximations for water waves, Arch. Rational Mech. Anal, Vol. 178, (2005),373-410.
[7] L. Bougoffa, A coupled system with integral conditions, APP. Math. King Khhalid University, Vol. 4,(2004), 99-105
[8] Z. Cao, C. Yuan, D. Jiang and X. Wang, A Note On Periodic Solutions Of Second Ovder Nonautonomous Singular Coupled Systems, Hindawi puplishing corporation, 15, (2010).
[9] R. F. Curtain and A. J. Prithechard, Functonal Analysis in Modern Applied Mathematics, Academic press, 1977.
[10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Uni versity Press, 1990.
[11] R. S. Johnson. A Modern Inteoduction to the Mathematical Theory of Water waves, Cambridge University Press, 1974.
[12] A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis, Prentice-Hallne, 1970.
[13] M. A. Kranselskii, On the conttinuity of the operator Fu(z) = f(z, u(x)), Dokl AKAD.Nauk. 77, (1951), 185-188.
[14] F. Linares and M. Panthee, On the cauchy problem for coupled system of KDV equations, ins. Mat. pure. April., (2000), 22460-320.
[15] E. Lombardi, Oscillatory Integral and Phenomena Beyond All Algebraic Orders, with Applications to Homoclinic Orbits in Reversible Systems. Lecture Notes in Mathemat ics, Springer-Verlag, 1741, 2000.
[16] T. Narazaki, Global solutions to the Cauchy problem for the weak coupled system Damped wave equations, Dynamical system, (2009), 106-106.
[17] J. T. Oden, Applied Functional Analysis, Prentice-Hall, Inc, 1979.
[18] M. N. Özer, A new integrable reduction of the coupled NLS equation, Tr. J. of Math., Vol. 122, (1998), 319-333.
[19] J. N. Stroh, Non-normality in scalar delay differential equations, M.Sc Faculty of the University of Alaska Fairbanks, (2006).
[20] G. Whitham, Linear and Non-Linear Willey Zeldorich, Ya.B., Barenblatt, G.I.
[21] P. P. Zabrejko, A. I. Koshelev, M. A. Kranselskii, S. G. Mikhlm, L. S. Rakovshchik and V. J. Stetsenko Integral Equations, Nauka, Moscow, 1968 [En-glish Translation by N. Leyden 1975).
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2026 مجلة العلوم الشاملة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









