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Abstract

This paper studies the qualitative behavior of solutions to coupled systems of delay
differential equations. Sufficient conditions for the existence and uniqueness of
solutions are established using fixed point techniques in appropriate Banach spaces.
examines the effect of coupling and time-delay parameters on the stability properties of
the system. The results contribute to a deeper theoretical understanding of coupled
delay differential systems and support their applicability in various mathematical and
applied modeling contexts.
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1. Introduction

Delay differential equations (DDE) are differential equations in which there is time lag. This
corresponds to a amount of time between a signal and response, providing a system feedback
timescale.

Models of this form arise in applications biology, engineering, ecology, chemistry, and other
systems containing derivatives which depend on a previous states [19].

Preliminaries and Notations
Through this thesis we will generally use the following notations:

(1)- Let € = C(I) denotes the class of continuous functions defined on the interval I = [0, T]
with the norm

£l = supe ™ iepom 1£(0))], N> 0.
which is equivalent to the usual norm

Il = supeecom | f (O

x) such that x,y € C(I)

(2)- X denotes the class of all column vectors (y

With the norm

1G] = et + v
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(3)- Y denotes the class of continuous functions (x, y) such that x, y € C(I)with the norm

Ge = llx]l + [yl
Definition [13]
Assume that f: 1 X R — R satisfies Caratheodory conditions, that is measurable in t for any
x and continuous in x on the interval I ,we assigned the function

(Fx)(®) = f(t,x(t)), tel.

The operator F, defined in this way is called the superposition operator generated by the fu
nction f.

Theorem [2]
The function f(x) = f1(x), f(x)2, ..... f(x)) is uniformly continuous In I = [a, b]if and on
ly if each f; is uniformly continuous in [a, b].

Theorem (Banach contraction mapping principle) [10]
Let X be a complete metric space and let T: X — X be a contraction map. Then T hasa u

nique fixed point in X .Moreover,for any x, € X ,the sequence {T"(xo)}n OZO converge

0
s to the fixed point.

This theorem is the most useful fixed point theorem, which is involved in many of the ex
istence and uniqueness proofs in ordinary differential equations. The mapping T is the B
anach contraction mapping principle still has a unique fixed point in any closed subset M
of X. There are some conditions for a continuous mapping T in X.

Theorem (Schauder) [10]

Let Q be a convex subset of a Banach space X,and T: Q — Q is compact ,continuous map. Th

en T has at least one fixed point in Q.

Definition [12]
let F = f;: X = Y,i = I be a family of functions with y being a set of real (or complex) num
bers, then we call F uniformly bounded if there exists a real number ¢ such that |f;(x)| <c¢
,Viel,x € X.

Definition [12]

Let F = {f(x)}is the class of functions defined on A = [a, b] c R the class of functions F

= {f(x)} is equicontinuous if Ve > 0, 3 §(¢) such that

Ix—yl< §=|f(x)—fY)| <e,VfEFandx,y€EA

Theorem (Arzela-Ascoli theorem)[12]
Let E be a compact metric space and C(E) be the Banach space of real or complex valued ¢
ontinuous functions norms by

IfIl = teelf D
If A ={f,}isasequence in C(E) such that fn is uniformly bounded and equi-continuous ,th
en A is compact.

Theorem (Lebesgue dominated convergence theorem)[12]
Let {f,,} be a sequence of functions convergingto a limit f on A, and suppose that

(O] <0(), teEA n=12,.... where @ is integrable on A4, then f is integrable on A
and
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lim [ fi@odu= [ FOdu
n=eJa A
2. Existence of a unique solution

. . . . X
The existence of a unique continuous solution (y) for the coupled system of the delay

differential equations.

2 Ay®yt-1))  rpt>0 ()

d
= = f(tx(®©,x(t —rp)) r,t>0 (2
subject to the data
x(t) = xg t<0 (3)

y(®) =yo t<0 (4)

. . X
Let X be the class of continuous column vectors with the norm (y) such that x,y €
C[0,T] with the norm

X
1G] = txll + 11l = supceor|x (O] + suprego r Ly @)

Consider the problem (1.1)- (1.4) under the following assumptions.
(D £::[0,T] X R X R - R are continuos
Q) f; satisfy the Lipschitz condition

|fi(t, %1, %2) = fi(&, Y1, ¥2)| < Li(lxy —yal + |2 —y21) , L; >0, i =1,2.
Now we have the following theorem

Theorem 1.2  Let the assumptions (1) and (2) are satisfied. If 2LT < 1, where L =

max(Lq, L,) then the problem (1.1)- (1.4) has a unique solution (;) EX.
Proof. The problem (1.1)- (1.4) can be written as
i(x) _ At y®),y(t —1)) (xo) —x
a\y) \f(6x@),xt—1))) " Wl 70

Integrate both sides of the coupled system of the delay differential equations (1.1) and (1.2),
we obtain

() Iy (s, y()yo)ds + [ fi(5,¥(), y(s = 1))ds

= Xo + T t
fOZ f2(s,x(s), x0)ds + frz fo(s,x(s), x(s — 1))ds
3363
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Define the operator F

v (x) _ (le) _[*o + forl f1(s,¥(s), y0)ds + fé fi(s,y(5),y(s —ry))ds
2y Yot forz f2(s,x(s), xo)ds + f:z fo(s,x(s),x(s —13))ds

Now
let x € C[0,T], then
|Fyx(ty) — Fyx(ey)] =
= |xo+ [ Ailsy()y0) ds + [ fils,y(),y(s =) ds —xo -
I (s y(s), yo) ds = [ fi(s,9(5), ¥(s — 1)) ds|

f:ll fi(s,y(s),y(s —=r))ds + f:lz fi(s,y(s),y(s —11)) ds —
f:ll f1(5»}’(5),y(5 - 7‘1)) ds|

< J2|A (s y(s),y(s —1)| ds

This implies that F;x € C[o, T]
Also, for y € C[0, T] then

IFy(t) = Fay(e)] = [yo + J;° fols, x(5), %0) ds + [ fo(s,%(s), x(s —
) ds = yo — [ fo(5,2(5), x0) ds — [ fo(s,x(s), x(s = 12)) ds]|

frt; fo(s,x(s), x(s = 1,)) ds + frzz fo(s,x(s), x(s = 1,)) ds —
fril fo(s,x(s), x(s = 1)) ds| < fttl2|f2 (s,x(s),x(s —1p))| ds
This implies that F,y € C[0,T]

Hence F: X - X

Let U= (;1) and V = (;2)

Then

Iy f1(s,71(),y0)ds + [ fi(5,71(), y1 (s = m))ds
137 fa(s, x1(s), x0)ds + f_ fo(s,21(8), %1 (s — 7)) dls
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and
% 13 105 y2(8),¥0)ds + [ fi(5,72(5), y2(s — 1)) ds
Fv=F(7)=Xo+[ . :
& [0 £, 22(8), x0)ds + [ fo(5,2(5), 22(s — 1)) ds
Then
FU —-FV =
Jo fuls y1(8),y0)ds + [ fi(5,31(). 1 (s —m))ds |
fOTZ fZ(SJ x1(5)'xo)d5 + f,:; fz(s, Xl(S), xl(S — Tz))dS
Jo! fi(5,72(5), yo)ds + [ fi(5,¥2(5),72(s = 1) )ds
137 f2(5,%2(8), x0)ds + [} fa(5,%2(8), %o (s = 72))ds
And
||FU — FV|| = | forl f1(s,¥1(s),y0)ds + f:l fl(s, y1(8),y1(s — rl))ds _

forl f1(5,y2(8),y0)ds + f:l f1(5' Y2(8),y2(s — 7'1))d5 +
| forz f2(s,%,(5), xg)ds + frtz fo(s,%1(8), %, (s — 15))d
137 fa(s, x2(5), 20)ds + f. fo(s,%2(5), %2 (s = 75))ds
But

Iy fu(s,31(8),y0)ds = i fi(5,y2(5), yo)ds + f fi(s,71(), 1 (s —
r))ds — [} £ (5,72(5),y2(s — 1)) ds|

Y
|

<[, fi(s,31(8), ¥o)ds — fi(s,y2(), yo)ds| +
7”1))d5 - f1(5» V2(8),¥2(s — 7”1))d5|

< Jo 1fi(s,31(8),y0)ds = f(s,¥2(5), ¥o)ds| + [ | fi (s, y1.() va (s —
7”1))d5 - f1(5: y2(8),y2(s — 7"1))d3|

< Ly [ 1ya(8) = 729 + Ly J; [31(8) = y2()] + Ly [{lya(s) = () lds

INACSAORACE

t t
< Lyllys = v2ll ;" ds + Lyllys = y2ll . ds + Lyllys = yall f;ds < Lyllys —
yoll(ry +# T—1r; +T)
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< 2L;Tlly; = »21l.
And

|f0r1 f2(s,x1(s), x0)ds — forl f2(s, x5(8), x0)ds + f:l fo(s,%1(8), x1(s —

r))ds — f:l fo(s,%2(s), x5 (s — rl))ds| < |f0r1 £>(s,x1(8), x0)ds —

fa (s, %2(5), xo)ds| + |f:1 fo(s,%1(8),%1(s = 11))ds — fo(s, x5(), x5 (s —
rl))ds| < forllfz(s, x1(8),x0)ds — f5(S, x5 (), xo)ds| + frt1|f2 (s5,2,(5), %, (s —
r))ds — f5(5,%2(5), x,(s — 1) )ds| < Ly forllxl(s) — x,(s)| + L, frtllxl(s) —
x,(s)| + Ly fotlxl(s) —xx,(s)|ds < Lq|lx; — x,|| f0r1 ds + L||x; —

xall £ ds + Lyl = x| [fds < Lyllag = 2 li(ry + T =13 +7T) < 2Ly Tlly —
x|

Then
IFU — FV|[ < 2L Tlly; — y2ll + 2L, T|[x, — x|

< 2LT(|lxy = 22|l + llyr = w21D
< 2LT||U = V||.
Where L = max(L,,L,). If 2LT < 1,then F is contraction.
Using the Banach fixed point theorem we deduce that there exists a unique

X

y) € X, of the integral equation (9).

solution (
To complete the proof, differential both sides (9), we obtain the delay differenti
al equations (1)-(2)

Letting t < 0 in (9), We obtain the initial data (3)-( 4).

3. Existence of at least one solution

We study the existence of at least one continuous solution for the coupled system of the delay
differential equations (1.1)-(1.2).

. . . . . (X
Finally, we study the existence of a unique uniformly stable solution (y) the coupled system

of the delay differential equations for

dx

@ =hEy®yE-m), t>r>0 (@

% = fo(t,x(®),x(t=1)), t>r>0  (6)

subject to the data
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x(t)=xy, t<r 7

y@&) =y, t<r (8)

Let Y be the class of continuous functions ( x,y) , x,y € C[0,T] , with the norm
G PN + 1l + Y1l = supeego (O] + supeeor |y ()]

Consider the problem (1) - (2) under the following assumptions

(1) fi:[o,T] x Rx R Satisfy Caratheodory condition ,that is are measurable in t €
[0,T] for any x € R and continous in x € R for almost all t € [0,T]

(2) there exist integrable functions m; €
L'[0,T] , and positive constants by, by, by, by > 0 such that

If1(t x1, x2)| < my + bylxq| + balxa|, |f2(8 y1, ¥2)| < my + balys| + baly,|
3) fotmi(s)ds <k;,i=12.
Now we have the following theorem

Theorem Assume that ( 1*),(2*) and (3) are satisfied, then there exists at least one solution coupled
system of delay differential equations (1) (4).

proof. Integral both sides of the coupled system of delay differential equations (1) -(2), we obtain the
integral equation

()= ()4 Iy f1(s,y(8),y0)ds + [, fi(5,¥(s), y(s —m))ds
YT 7% £, x(9), x)dls + [ fo(s,x(8), x(s = 7)) ds

Define the operator F by

F(x'}’) = (le: FZx) = (xO + f(;rl f1(5'}’(5)'}’0)d5 + fri f1(5'}’(5);3’(5 - 7‘1))d5:J’0 +
137 fals,2(5), x0)ds + [ fo(5,%(5), x(s = 13))ds )

Define the set @ = {(x,y) € Y: ||Cx, Il + llx[l + llyll < M}

Now
IFyx| = |xo + [ u(5,¥(5),y0)ds + [ fu(s, (), ¥(s —1))ds]
< Ixol + [ 1(5, ¥, yo)lds + [ [fa(s,7(), y(s =) |ds

< Ixol + Jg my()ds + by [ y()lds + by J yolds + [ my(s)ds + by f ly(s)lds +
b [1y(s)lds

< |xol + 2ky + 3B, ||y|IT + b2 |yo|T = Ny
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Where B; = max(bq, b,), Hence F; is uniformly bounded.

Similarly we have
P31 = [yo + J3? fals,%(5), %0)ds + f, fa(s,2(5), x(s — 1)) ds|
< lyol + J3*1f2(s, x(5), xo)lds + [ | fo (5, %(s), x(s = 72))|ds

< Iyol + fy > mu(s)ds + by [, *[(s)lds + by [ *xolds

+ftm2(s) ds + bs ftlx(s)lds + b4ft|x(s)|ds

1 &1 0
< |¥ol + 2k; + 3B, ||x||T + bylxo|T = N,
Where B, = max(bs,b,). Hence F, is uniformly bounded.
Combining the results we obtain
IFCe, Wl = [[Fixll + 1Pyl S Ny + No < M
Which implies that F is uniformly bounded.

We have For t,,t; > 1y, t; >ty and |[t;, — t;] < 6,

|Fyx(ty) = Fux(t)] = |xo + [ fi(s,9(5),y(s —1))ds = xo = [ fu(5,7(), y(s — 1) )ds|

[ (5,99, y(s =) ds + [ fu(s,7(), y(s —=m))ds = [ fi(5,7(s), y(s = 71)) |

t
<[’

[ fi(5,¥(5), y(s —))ds|

< fttlz my(s)ds + by fttlzly(s)lds + b, ftiz__:11|y(s)|ds
< fttlz my(s)ds + 2M(t, — t;).

Hence {F;x} is class of equicontinuous.

For t,,t;y >r,,t, >t; and |t, —t;| <& we have

|Fax(t2) = Fax (6] = [yo + [, fa(s,2(5), x(s = 12))ds = yo = [ fo(5,%(), (s = 12)) |

frzl fo(s,x(s), x(s — 13))ds + f:lz fo(s,x(s), x(s — 13))ds — fél fo(s,x(s), x(s — rz))ds|

t
<.

12 fa(s, (), x(s = 1))ds|

Z|x(s)lds
T2

t t t
< ftlz my(s)ds + bs ftlzlx(s)lds + b, ft:

< ft’f m,(s)ds + 2M(t, — ty).
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Hence {F,y} is class of equicontinuous.
This implies that F is equicontinuous function.

Therefor the operator F is equicontinuous and uniformly bounded, from Arzela — Ascoli theorem F is
compact.

Now
Let {y,} be convergent sequence such that y, — vy,

Then
7lll—r>rolo Fix, = xo + rlll_rgo foro f1 (s, y(s),y9)ds + 111_1)’1(‘)10 f:l fi(s,y(s),y(s —11))ds
But from the assumption
|f1( Yo, Y| < My + balynl + balyl
<my +b,M+b,M

And fl(t:yn:yn)ﬁfl(t'y'y)

Applying Lebesgue dominated convergence theorem , then

T t
lim Fyxp, = xo + rllim f f1(s,y(s),y0)ds + Aim f fl(S'}’(S):}’(S - Tl))ds = Fix
—00 0 —00 7

n—-oo

Which proves that F; is continuous operator.

Let {x,,} be convergent sequence such that x,, —» x, then

n—oo

1) t
lim F,y, = y, + lim f fo(s,x(s),x0)ds + lim f fo(s,x(s), x(s — 1))ds
n—-oo 0 n—-oo TZ
But from the assumption
|f2(t'xn:xn)| < my + b3|xn| + b4-|xn|
<my;+bsM+b,M

And £, (¢, xn, xy) = fo(t,x,x)

Applying Lebesgue dominated convergence theorem , then

lim Fpy, =y + 1&1_{120 forz f2(s,x(s), x0)ds + 7111_{210 frz fo(s,x(s),x(s —1,))ds = F,y

n—oo

Which proves that F, is continuous operator.

Hence F: Q — Q is continuous and compact using Schauder fixed point theorem has a fixed point
(;) € X which proves that there exists at least one solution (9) of the coupled system of the delayed
fifferential equations (1)- (2).
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()= ()4 Iy (s, y(s),yo)ds + f fi(s,y(),y(s —=71))ds
YD 7% £, x(9), x)dls + [ fo(s,x(8), x(s = 7)) ds

Complete the proof , differential both sides we obtain the delay differential equations (1)-( 2).

Letting in (9), we obtain the initial data (3)-(4).

4. Stability of solution
Here, We study the uniform stability of the solution of the problem (5) - (8) Consider the two coupled
system of the delay differential equations (5) - (6)

subject to the data
x(t) =Xy, t<r (10)

y) =yo, t<T (11)

Definition The system of differential equations (5)- (6) is uniformly stable if v.e > 0, 3§ > 0, such
that

_ 6 _ ) X X
|x0—x0|<§ and |3’0—}’0|<§ = ||(y)_(37>||<6
Now we have the following theorem

Theorem Let the assumptions of the Theorem (4) are satisfied, then the solution of the coupled system
(5) - (6) is uniformly stable.

Proof. The solutions of the differential equation (5), (8) and (5), (6),( 10), (11) are given by

M@=Cﬂn=(%+ﬂﬁsywyd“+ﬁﬁﬁwwmc—ﬂﬁj
y(® Yot forfz(S,x(s),xO)ds + frtfz(s’x(s)’x(s — r))ds

And

10 =(5) = ( +Jy Fuls5(5),50)ds + ; fi(s, 76, 7G5 - T))ds>
Yo + forfz(S,f(S),fo)ds + f:fz(s,f(s),f(s —1))ds

6 8
Let |xo —Xo| <5 and |yo—5¥ol <3,
Then

U-T=
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(xo + 5 1G5, y(8),yo)ds + [ f(s,v(s), (s - r))ds> B

y0-+.ﬁ:]§(s,x(s),xo)ds-+ Lffé(s,x(s),x(s —1))ds
(fo + Jy 105, 7(), Fo)ds + J; fi (s, 9(s), ¥ (s — r))ds>
Vo + Jy fa(s,2(s), %o)ds + f fo(s, %(s), %(s —1))ds

And

U =TIl < ||t — %o + f fuls, ¥(5), yo)ds — [} f(s,5(s), 7o)dls + f fi(s,y(), y(s —))ds —
Lffi(s'y(s),Y(S —-T))ds|

+ ”3’0 Yot forfz (s,x(s), x0)ds — forfz(S,f(s),fo)ds + f:fz(s,x(g),x(s —7))ds —
[ fo(s,%(s), %(s — 7)) s

< Ixo — %ol + [yo = Fol + || £1(5,7(5),y0)ds = J fu(s, 5(s),Fo)ds + f fo(s,y(s), (s —
r)ds = [} fi(s,5(5),5(s = )ds|| + || [y fos,x(5), x0)ds = [ fo(s, %(), Fo)dls +
I} (s (), x(s = m)ds = J7 fo(s,%(5), %s =) |

But

|fy f1(5,¥(), yo)s = fy fu(s, 5(s), Fo)ds + f; fi(s,¥(s),y(s = 1))ds = f; (s, 7(s), 7(s —
r))ds|

<|f5 fils¥(s), y0)ds = [§ fi(s, 5(s), Fodds + [} fu(s,¥(s), y(s = 1))ds — [ fi(5,5(s), F(s
r))ds|

=< forlfl(siy(s)'yO) - fl(sl}_](s)'}_/o)l ds + f:lfl(s,y(s),y(s - 7")) - fl(s'y(s)j(s - r))|ds
< Ly [T1y(s) = 7 ds + Ly [ 1yo — ol ds + Ly [1y(s) = 7(s)| ds + Ly [*1y(s) — 5(s)] ds

< Ly [T1y(s) = F()lds + Ly [} 1yo = Fol ds + 2Ly [11y(s) — () ds

Then

e |fy fi(s, ¥(5),y0)ds = fj fu(s, 7(s), Fo)ds + [} fi(s, y(s),¥(s =) ds —| [ fu(s, 7(s), (s —

r))ds

_ _ _ _ _ _ t _ _ _
< Ly fy e NEeNs |y(s) — §(s)|ds + e VL [yo — Yol f, ds + 2Ly [, eNE=) e7Ns|y(s) —
y(s)lds

< Lylly = 3l [y e s + e Lylyo = Fol fy ds + 2Ly lly = 7l [y e~V ds
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_ =N(t-1) —-Nt _ _ _ 1 —Nt
< Lally =7l <(e NN >+e NeLylyo — Folr + fy ds + 2Ly lly = 31l (5 — )>

e—N(t—r)

— — _ —_n 1
< Lylly = yll=—5—+ e N Lilyo — Folr + 2L lly = 3l 5

— _ L _ L _
<e™NLylyo — Folr + S lly =yl + 22y — ¥l
_ _ L _
< e ™MLylyo = Yolr + 33 1ly = 7.
Similarly we have

|f0r f2(s,x(s), x9)ds — for f2(s,%(s), Xp)ds + f: fo(s,x(s),x(s —1))ds — f:fz (s, %(s),%(s —
r))ds|

< |f0r fo(s,x(s), x9)ds — for fo(s,%(s), %o)ds + f: fo(s,x(s),x(s —1))ds — f:fz (s,%(s),x(s —
r))ds|

< Jy1f2(5,x(5), %0) — fo(5, %(5), Bo)l ds + [} | a5, %(5), x(s = 1)) = fo(, %(s), Z(s — 1)) |ds
< L, [ 1x(s) — ®(s)| ds + Ly [ Ixo — %ol ds + Ly [ |x(s) — ()| ds + L, [ |x(s) — Z(s)| ds
<L, forlx(s) —x(s)|lds+ L, forlxo — Xolds + 2L, f:lx(s) —x(s)|ds

Then

e—Nt

forfz (s,x(s),x0)ds — forfz(s,f(s),fo)ds + f:fz(s,x(s),x(s —1))ds —| f:fz(s,f(s),f(s —
r))ds

<L, fore‘N(t‘s)e‘Ns lx(s) — x(s)|ds + e Nt L,|xq — X fords +2L, fote‘N(t‘S) e NS|x(s) —
x(s)|ds

< Lyllx — % fy e Dds + e 7N Lylxo — %ol [y ds + 2L; [lx — 2| fy eV ds

_ e~N(Et-1)  o-Nt _ B v 1 oMt
< Loflx — x| (( N N ) +e ™ Ny|xg — Xolr + [ ds + 2L, ||lx — x| (ﬁ_ N )>

e—N(t—r)

N

_ _ _ 1

< L,|lx — x|| +e Nthle—x0|r+2L2||x—x||ﬁ
—Nt = Ly = Ly =

<e MLylxg — Xplr + . [lx —x|| + 2 . [l = x||

_ L _
<e N |xy — Xo|r + SEZ lx — x|

Hence
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— _ _ L _ _ _ L _
1U = Tl < 8+ e ™MLy lyo — Folr + 32 lly = 1l + e ™MLyl — Zolr + 32l — %]
_ _ _ L _ _
<d+e NtLr(lYO_yol+|x0_x0|)+3ﬁ(”y_yn+”x_x”)
< (e, +1)6 + 3§||U — 7l

Where L = max(L,,L,).

Then
U -0 (1 - 3%) < (e™NL, +1)5
Hence
-0l <(1- 3%)_1 (e ML, +1)5=c ™
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