مدى استخدام مفهومي تحليلات البيانات الضخمة وحوكمة تكنولوجيا المعلومات ودورهما في كشف الغش بالقوائم المالية: دراسة ميدانية على المصارف التجارية
DOI:
https://doi.org/10.65405/gk5j3c83Keywords:
Big Data Analytics - Information Technology Governance - Detecting Fraud in Financial Statements.Abstract
This research aims to measure the extent of use of the concepts of big data analytics and information technology governance and their role in detecting fraud in financial statements by applying them to commercial banks during the period from 2025, especially in the existence of a guide for applying information technology governance issued by the Central Bank of Libya, as the results of the research showed: the lack of use of the concept of big data analytics in commercial banks, the lack of use of the concept of information technology governance in Libyan commercial banks, Finally, while traditional tools are effective in detecting fraud in financial statements of Libyan commercial banks, they offer limited benefits due to rapid developments and changes. Modern financial and non-financial tools, such as big data analytics and information technology governance, can significantly enhance the ability to confront and reduce fraud risks.
Downloads
References
المراجع العربية:
1. مصرف ليبيا المركزي، 2023، دليل حوكمة تكنولوجيا المعلومات. طرابلس، مصرف ليبيا المركزي، (المنشور رقم 21/2023).
المراجع الأجنبية:
1. Ali, S. A., Allaymoun, M., Al Astal, A. Y. M., & Saleh, R. R. (2024). Detecting and Preventing Fraud in Financial Transactions: A Case Study on Big Data Analysis at Kareem Exchange Company (pp. 305–317). Emerald Publishing Limited. available online at: https://doi.org/10.1108/s1479-351220240000036028.
2. Andry, J.F., & Setiawan, A. (2019). IT GOVERNANCE EVALUATION USING COBIT 5 FRAMEWORK ON THE NATIONAL LIBRARY. Jurnal Sistem Informasi. available online at: https://www.researchgate.net/publication/332442566.
3. Ashtiani, M. N., & Raahemi, B. (2021). Intelligent Fraud Detection in Financial Statements using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access. available online at: https://doi.org/10.1109/ACCESS.2021.3096799
4. AU, R., & HF, N. (2013). IT-Driven Approaches to Fraud Detection and Control in Financial Institutions. West African Journal of Industrial and Academic Research, 8(1), 35–42. available online at: https://www.ajol.info/index.php/wajiar/article/download/97547/86851.
5. Baah, S. S., Adu-Twum, H. T., Adjei, S. O., Ampadu, G., O, A. M., & Fonkem, B. (2024). Leveraging big data analytics to combat emerging financial fraud schemes in the USA: A literature review and practical implications. World Journal Of Advanced Research and Reviews, 24(1), 017–043. available online at: https://doi.org/10.30574/wjarr.2024.24.1.2999
6. Boritz, J. E., & Lim, J.-H. (2008). IT Control Weaknesses, IT Governance and Firm Performance. Social Science Research Network. available online at: https://doi.org/10.2139/SSRN.1082957.
7. Canbaz, Y. S., Dogrusoz, U., Çeliksoy, M., Gungor, F., & Kurban, K. (2020). Hydra: detecting fraud in financial transactions via graph based representation and visual analysis. available online at: https://doi.org/10.1109/ISMSIT50672.2020.9255191.
8. Chen, J. H. (2024). LightGBM Model for Detecting Fraud in Online Financial Transactions. Highlights in Science Engineering and Technology, 93, 363–371. available online at: https://doi.org/10.54097/xw0bng93.
9. Costa, M. P. L., & Araujo, E. (2021). Fuzzy Financial Fraud Risk Governance System in an InformationTechnologyEnvironment.availableonlineat:https://doi.org/10.1109/3ICT53449.2021.9581461.
10. Darwish, D. (2023). Introduction to Big Data Analytics (pp. 1–48). IGI Global. available online at: https://doi.org/10.4018/979-8-3693-0413-6.ch001
11. Devi, P. V. S. (2024). Corporate Governance as a Detector of Financial Statement Fraud: Systematic Literature Review. Asia Pacific Fraud Journal, 9(1), 37–47. available online at: https://doi.org/10.21532/apfjournal.v9i1.342.
12. Dhawas, P., Ramteke, M. A., Thakur, A., Polshetwar, P. V., Salunkhe, R. V., & Bhagat, D. (2023). Big Data Analysis Techniques (pp. 183–208). IGI Global. available online at: https://doi.org/10.4018/979-8-3693-0413-6.ch007.
13. Elsayed, A. A. (2017). The Financial Statement Fraud Risk. Social Science Research Network. available online at: https://doi.org/10.2139/SSRN.3039035.
14. Emran, A. M., & Rubel, Md. T. H. (2024). Big Data Analytics And Ai-Driven Solutions For Financial Fraud Detection: Techniques, Applications, And Challenges. 1(01), 269–285. available online at: https://doi.org/10.70937/faet.v1i01.40.
15. Gabrielli, G., & Medioli, A. (2019). An Overview of Instruments and Tools to Detect Fraudulent Financial Statements. Journal of Accounting and Finance, 7(3), 76–82. available online at: https://doi.org/10.13189/UJAF.2019.070302.
16. Gill, N. S., & Gupta, R. (2009). Prevention and Detection of Financial Statement Fraud: A Data Mining Approach. Social Science Research Network. available online at:https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1462623.
17. Griffiths, M., Janahi, L., & Al-Ammal, H. (2014). IT Governance from Theory to Practice: The importance of accountability. available online at: https://doi.org/10.14236/EWIC/BCSIIT2014.10.
18. Gupta, R., & Gill, N. S. (2012). A Data Mining Framework for Prevention and Detection of Financial Statement Fraud. International Journal of Computer Applications, 50(8), 7–14. available online at:https://doi.org/10.5120/7789-0889.
19. Halbouni, S. S., Obeid, N., & Garbou, A. (2016). Corporate governance and information technology in fraud prevention and detection: Evidence from the UAE. Managerial Auditing Journal, 31, 589–628. available online at: https://doi.org/10.1108/MAJ-02-2015-1163.
20. Handoko, B. L., & Rosita, A. (2022). The Effect of Skepticism, Big Data Analytics to Financial Fraud Detection Moderated by Forensic Accounting. available online at: https://doi.org/10.1145/3537693.3537703.
21. Hashid, A., & Almaqtari, F. A. (2024). The Impact of Artificial Intelligence and Industry 4.0 on Transforming Accounting and Auditing Practices. Journal of Open Innovation. available online at: https://doi.org/10.1016/j.joitmc.2024.100218.
22. Hettmansperger, T. P., McKean, J. W., & Sheather, S. J. (2014). Rank Based Inference. Available online at: https://doi.org/10.1002/9781118445112.STAT06540.
23. Jadhav, S. (2024). Big Data Analytics. International Journal for Research in Applied Science and Engineering Technology. available online at: https://doi.org/10.22214/ijraset.2024.59806.
24. Li, Y. (2024). Research on Big Data Financial Fraud Detection System Based on Machine Learning. 366–370. Available online at: https://doi.org/10.1109/ichci63580.2024.10808078.
25. Memon, M. A., Soomro, S., Jumani, A. K., & Kartio, M. A. (2017). Big Data Analytics and Its Applications. 1(1), 45–54. Available online at: https://doi.org/10.33166/AETIC.2017.01.006.
26. Mudge, J. F., Baker, L. F., Edge, C. B., & Houlahan, J. E. (2012). Setting an optimal α that minimizes errors in null hypothesis significance tests. PLOS ONE,7(2).Available online at: https://doi.org/10.1371/JOURNAL.PONE.0032734.
27. Omogbeme, A., Iyabode, A., Soyele, A., & Ogunwobi, E. (2024). Enhancing fraud detection and prevention in fintech: Big data and machine learning approaches. World Journal Of Advanced Research and Reviews, 24(2), 2301–2319. Available online at:https://doi.org/10.30574/wjarr.2024.24.2.3617.
28. Pan, E. (2024). Machine Learning in Financial Transaction Fraud Detection and Prevention. Available online at: https://doi.org/10.62051/16r3aa10.
29. Pawar, S., & Malwadkar, G. (2023). Big Data Analytics: A Literature Review Paper. International Journal of Advanced Research in Science, Communication and Technology, 304–309. Available online at: https://doi.org/10.48175/ijarsct-8160.
30. Prasad, S., & Prawal, K. (2023). Big Data Analytics Lifecycle (pp. 100–118). IGI Global. Available online at: https://doi.org/10.4018/979-8-3693-0413-6.ch003.
31. Qin, T., Cheng, G., & Wang, Z. (2022). Construction and application of financial fraud early warning model based on data mining. 2nd International Conference on Applied Mathematics, Modelling, and IntelligentComputing(CAMMIC2022),12259,1225944.Availableonlineat:https://doi.org/10.1117/12.2639216.
32. Rasheed akrayi, S. A., & Ali, O. H. (2020). The Role of the Mechanisms of Information Technology Governance in Activating the Risk Management of Computerized Accounting Information Systems According to (NIST800-37) Framework of Internal Control (An analytical Study of a Sample of Joint Stock Compan. 5(3), 498–531. Available online at: https://doi.org/10.25212/LFU.QZJ.5.3.20.
33. Sadasivam, G. S., Subrahmanyam, M., Himachalam, D., Pinnamaneni, B. P., & Lakshme, S. M. (2015). Corporate governance fraud detection from annual reports using big data analytics. 3, 51–60. Available online at: https://www.inderscienceonline.com/doi/abs/10.1504/IJBDI.2016.073895.
34. Sadiku, M. N. O., Foreman, J., & Musa, S. M. (2020). Big data analytics: a primer. 5(9), 44–49. Available online at: https://doi.org/10.29121/IJETMR.V5.I9.2018.287.
35. Samagaio, A., & Diogo, T. (2022). Effect of Computer Assisted Audit Tools on Corporate Sustainability. Sustainability, 14(2), 705. Available online at:https://doi.org/10.3390/su14020705.
36. Sarda, V., Sakaria, P., Mistry, D., & Sanghvi, D. J. (2014). Fraud Detection in Financial Statements Using Classification Algorithm. Available online at: http://ijetae.com/files/Volume4Issue9/IJETAE_0914_85.pdf.
37. Selig, G. J. (2016). IT Governance-An Integrated Framework and Roadmap: How to Plan, Deploy and Sustain for Improved Effectiveness. Journal of International Technology and Information Management, 25(1), 4. Available online at: https://scholarworks.lib.csusb.edu/cgi/viewcontent.cgi?article=1252&context=jitim.
38. Shoetan, P. O., Oyewole, A. T., Okoye, C. C., & Ofodile, O. C. (2024). Reviewing the role of big data analytics in financial fraud detection. https://doi.org/10.51594/farj.v6i3.899.
39. Suyanto, S. (2016). The disappearance of Auditors’ Responsibility for Fraud Detection in Auditing Standards. The Indonesian Journal of Accounting Research, 19(2). Available online at:https://doi.org/10.33312/IJAR.407.
40. Udeh, E. O., Amajuoyi, P., Adeusi, K. B., & Scott, A. (2024). The role of big data in detecting and preventing financial fraud in digital transactions. World Journal Of Advanced Research and Reviews, 22(2), 1746–1760. Available online at: https://doi.org/10.30574/wjarr.2024.22.2.1575.
41. Van Grembergen, W. (2010). From IT Governance to Enterprise Governance of IT: a Journey for creating Business Value out of IT (p. 3). Springer, Berlin, Heidelberg. Available online at:https://doi.org/10.1007/978-3-642-16283-1_3.
42. Wan, L. (2023). Financial Risk Early Warning Based on Big Data Analysis. 1–5. Available online at: https://doi.org/10.1109/aikiie60097.2023.10390274.
43. Xiuguo, W. & Shengyong, D. (2022) An Analysis on Financial Statement Fraud Detection for Chinese Listed Companies Using Deep Learning. IEEE Access, 10, 22516–22532. Available online at: https://doi.org/10.1109/access.2022.31534782022.
44. Yuan, G. X., Luo, Y., Di, L., Zhou, Y., Wen, C., Liu, Y., & Gu, Y. (2024). The Extraction of Features That Characterize Financial Fraud Behavior by Machine Learning Algorithms. 159–186. Available online at: https://doi.org/10.1002/9781394175574.ch7.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








