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 -:الملخص

 .الخطية و الغير خطية واستعرضنا طرق حلها  المبنية على7/585غولدن ( -كلاين ) تناولنا في هذه الورقة البحثية معادلة
الثنائي و استخدامها لحل بعض النماذج الهامة من المعادلات التفاضلية الجزئية الخطية و غير  طريقة التحويل التفاضلي

رق عددية  نة باستخدام طالخطية لحلها بطريقة بسيطة و تحصلنا على الحل الفعلي للمسائل المدروسة ، و قمنا بإجراء مقار 
(، ثم قارناها ADMغولدن  و طريقة التحويل التفاضلي الثنائي)-( تستخدم لحل معادلة كلاين VIM , DTMتكرارية مثل )

مع الحل الفعلي من خلال الأمثلة المدروسة واستنتجنا قيمة الخطأ والدقة التي تعطيها كل طريقة ، في جميع الحالات حصلنا 
  ( .Mathematicla8ة و فعالة أثبتت دقة وفعالية هذه الطرائق باستخدام لغة البرمجة )على نتائج دقيق

 -المقدمة:

غولدن هي معادلة تفاضلية جزئية خطية ، تستخدم لوصف حركة الجسيمات في الفيزياء، -معادلة كلاين
الطاقة النسبية ، وهي معادلة مشتقة من صيغة 2226ثم تقديمها أول مرة من قبل كلاين وغولدن في عام 

وتظهر في الفيزياء النسبية ، أيضاً تستخدم لوصف ظاهرة تشتت الموجة ، ونجدها في البصريات غير 
 -غولدن كالتالي : -الخطية وفيزياء البلازما ، وتعرف معادلة كلاين

utt − uxx + b1u + g(u) = f(x, t)                                                     (1)       
( دالة غير g) ( تمثل الكثلة ، m( تمثل المكان ،)x( هو الزمن ، و)t(هي الدالة الموجية ، و)uحيث)

 ، والشروط الابتدائية لهذه المعادلة هي : دالة تحليلية معرفة f .خطية ،
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u(x, 0) = f(x) ,         
∂u(x, 0)

∂t
= g(x).                                               (2) 

 -: [4]غولدن لها أهمية كبيرة وتطبيقات واسعة ومتنوعة نذكر بعض منها -معادلة كلاين 

تستخدم لوصف حركة الجسيمات ذات الكتلة مثل الالكترونات   -فيزياء الجسيمات  : -2
 والبروتونات.

 تستخدم لوصف حركة النيوكليونات داخل النواة . -فيزياء النووية : -2
 ف سلوك الجسيمات في الأنظمة الكمومية .تستخدم لوص -ميكانيكا الكم : -3

غولدن ،التي تقدم حل سريع ودقيق -هناك العديد من الطرق العددية التكرارية لحل معادلة كلاين
 -وسنذكر بعض منها:

 ( .Gauss-Seidel Methodسايدل  ) -طريقة غاوس -2
 . (Successive over – Relaxation - SORطريقة الاسترخاء المتثالي ) -2
 (.Variational Iteration Method, VIM)طريقة  -3
 ( .Differential Transform Method . DTMطريقة ) -5
 ( .Jacobi Methodطريقة جاكوبي ) -5
 ( .Conjugate Gradient Methodطريقة التدرج المترافق ) -6

  وسوف نقوم بعرض الحلول التحليلية التقريبية عبر طريقة التحويل التفاضلي الثنائي
قة أى أن طريغولدن وهي تختلف عن طريقة سلسلة تايلور التقليدية . -دلة كلاينلمعا [13-11]

سلسلة تايلور تستغرق وقتاً حسابياً للأوامر الكبيرة , و باستخدام هذه الطريقة , من الممكن الحصول 
 تم تطوير هذه الطريقة و حصو [25]  و] 20-16 [علي نتائج دقيقة للغاية للمعادلات التفاضلية 

 . ل على حلول لحل مشاكل المعادلات الخطية و الغير الخطية

 . [3] نموذج معادلات تفاضلية جزئية خطية و غير خطية

كل من المعادلات التفاضلية العادية والجزئية يمكن أن تصنف إلى خطية وغير خطية. وتكون المعادلة 
 :التفاضلية خطية بشرطين

 .والمشتقات فيها دوال في المتغير المستقل فقط أو ثوابتإذا كانت معاملات المتغير التابع  .2
 إذا كان المتغير التابع والمشتقات غير مرفوعة لأسس، أي كلها من الدرجة الأولى .2

 .وتكون غير خطية فيما عدا ذلك
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 طريقة التحويل التفاضلي الثنائي .

 علي النحو التالي :17]-[22الأساسيةيتم تعريف العمليات  الفكرة الأساسية لتحويل التفاضلي الثنائي

,xلديها متغيرين )  Wبفرض أن الدالة  y,w وتكون تحليله في النطاق )k (حيث(x0, y0 = (x, y )
 هذا النطاق . في

,xيمكن كتابة الدالة ) y )w ( بسلسلة واحدة يقع مركزها في النقطةx0, y0 ويكون التحويل التفاضلي )
,xللدالة ) yي :( التي علي شكل التال-  

W(k, h) =
1

k! h!
[.
∂k+hw(x, y)

∂xk ∂yh
](x0,y0)                                                (3) 

,xحيث   ) y)𝐰 , هي الدالة  لأصلية𝐰 (𝐤, 𝐡)هي التحويل التفاضلي العكس لدالةW ( K ,h) علي
 -النحو التالي :

𝐰(𝐱, 𝐲) = ∑∑𝐰(𝐤,𝐡)(𝐱 − 𝐱𝟎)
𝐤

∞

𝐡=𝟎

(𝐲  − 𝐲𝟎)
𝐡

∞

𝐤=𝟎

.                                                   (𝟒) 

,x0حقيقة هذا التطبيق انه عندما يتم أخذ النقطة ) y0( علي أنها)عن الدالة . ( يتم التعبير0,0 

(𝐱, 𝐲) 𝐰( نستطيع كتابتها علي صورة :5سلسلة محدودة من المعادلة )- 

𝐰(𝐱. 𝐲) = ∑∑
𝟏

𝐤!𝐡!
[[
𝛛𝐤+𝐡𝐰(𝐱, 𝐲)

𝛛𝐱𝐤𝛛𝐲𝐡
](𝟎,𝟎)] 𝐱

𝐤𝐲𝐡                              (𝟓)

∞

𝐡=𝟎

∞

𝐤=𝟎

 

 (.2يتم سرد العمليات الحسابية التي يتم  إجراؤها بوسطه طريقة التحويل التفاضلي الثنائي في الجدول )
 (2جدول )

 

 الدالة الأصلية التحويل التفاضلي  الثنائي لدالة الأصلية

w(k) = U(k, h) ± V(k, h) w(x, y) = u(x, y) ± v(x, y) 

w(k, h) =∝ U(k, h), ∝ is consant  w(x, y) =∝ u(x, y) 

w(k, h) = (k + 1)U(k + 1, h) w(x, y) =
∂u(x, y)

∂x
 

w(k, h) = (h + 1)U(k, h + 1) w (x, y) =
∂u(x, y)

∂x
 

w(k, h) =∑∑U(r, h − s)V(k − r, s)

h

s=0

k

r=0

 w(x, y) =  u(x, y)v(x, y) 
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w(k, h) = δ(k − m, h − n) = δ(k − m)δ(h − n) w(x, y) = xmyn 

{1, h = n.
0, h ≠ n.

={1,   k = m.
0,   k ≠ m.

δ(h − n)= δ(k − m)Where 
w(k, h) = (k + 1)(k + 2)…(k + r)(h + 2)… (h + s)U(k + r, h + s) 

w(x, y) =
∂r+su(x, y)

∂xr ∂ys
 

 من خلال الأمثلة التالية سوف نقوم بتوضيح فعالية هذه الطريقة .
 (:1مثال )

  [4]   غولدن-معادلة كلاين لتكن لدينا 
(6 )                                                                                         ttu

= uxxu  - 
 بشروط ابتدائية هي :

(7                                                           )0 ( =0,x ) , ut sinx+2  =
(x,0 )u 

 ( ينتج أن :6عند استخدام التحويل التفاضلي  الثنائي للمعادلة )
(8)  u(k,h)                            =u(k,h2)-(k+1)(k+2)u(k+2,h) (h+2( )h+1) 

  
  باستخدام الشروط الابتدائية لهذا التحويل علي صورة

U(k, 0)   =

{
 
 

 
 

1       ,      k = 0
1

k
 ,             k = 1,5,…

−
1

k
          , k = 3,7,…

0  ,    k = 2,4,6,…

                                             (9) 

(20                                                                                )0  =U 
= (k,1) 

 ( علي التوالي نحصل علي الحل 8( في )20,  2بالتعويض في )
  u(x, t) = ∑ ∑ u(k, h)xkth∞

h=0
∞
k=0 

 = sin x + cos ht                                                (11)(t2

2!
+
t4

4!
+⋯+2( +)x3

3!
+
x5

5!
+

⋯)x-=)                                

 .(7( و )6فيكون الحل الـ )
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 -:(0مثال )

 [3]الخطية الغير متجانسة  غولدن-معادلة كلاين يفرض أن لدينا   

(22)                                       utt − uxx − 2u = −2 sin x sin t 

 -بشرط ابتدائي التالي :   

(23)u(x, 0)  = 0 , ut(x, 0) =      sin x                                                 

 ( علي الشكل التالي :22يكون التحويل التفاضلي للمعادلة ) 

(h+1) (h+1) U (k,h+2) – (k+1)(k+2)U(k+2,h)- 2U(k,h) =                                                     

=2 sin (
kπ

2
)  

k!

 sin (
 hπ

2
)  

h!
                                                                   (14) 

 والحل لهذا التحويل يكون : 

  U(k,0)=0                                                                               (15) 

 

U(k,1)={
0, k = 0,2,4, … . .
 1

k!  
, k = 1,5… ..    

 −
 1

k!  
 , k = 3,7… . . .

                                                 (16) 

 ( نحصل علي 25( في المعادلة )26) –( 25وبالتعويض ب )

)x3

3!  
+

x5

5!  
+⋯  -=  (x  htkU (k,h) x ∑ ∑  ∞  

h=0  
∞

k=0     
=u(x, t) 

( t – t3
3!  
+

t5

5!  
+⋯)    =  sin x sin t                                                     (17) 

 .( 23( و)22وبهذا يكون الحل لـلمعادلات)   

 

 (8مثال )

 الغير خطية و الغير متجانسة التالية : غولدن-معادلة كلاين نفرض إن لدينا  

(18)             6t  6)+ x2t - 2= 6xt (x2 Uxx+ U -ttU    

 وبشروط ابتدائية     

    (22                                                   )0  (  =x,0 )tU   ,0 =U(x,0) 
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 ( هو28ويكون التحويل التفاضلي للمعادلة )  
(h + 1)(h + 2)U(k, h + 2) − (k + 1)(k + 2)U(k + 2, h)

+∑∑U(r, h − s)U(k − r, s) =

h

s=0

k

r=0

 6δ(k − 3, h − 1)

− 6δ(k − 1, h − 3)
+ δ(k − 6, h − 6)                                                        (20) 

 والشروط الابتدائية المحولة هي :

U(k,0)=0                                                                            (21)  

     
U(k,1)=0                                                                          
(22)  

 ( كم يلي :20( علي التوالي من )22( , )22يمكن الحصول علي الحل الدقيق للمعادلات )

(23)                                           3t x3=  ∑ ∑ U(k, h)xkth∞
h=0

∞
k=0)=(x, t)U ( 

 : ]26[وبالتالي يتم الوصول للحل الدقيق لـ   
u ((x, t))   = x3t3                                                                             (24) 

 (.5مثال)

 الغير خطية والغير متجانسة التالية: غولدن-كلاين  بفرض ان لدينا معادلة
utt − uxx + u

2

= −x cos t
+ x2cos2t.                                                                                  (25) 

 بحيث تكون الشروط الابتدائية :
u(x, 0) = x , ut(x, 0) = 0                                                                         ( 26) 

 ( يكون:25التحويل التفاضلي للمعادلة )
(h + 1)(h + 2)U(k, h + 2) − (k + 1)(k + 2, h)

+∑ ∑ U(r, h − s)U(k − r, s) =
h

s=0

k

r=0

1

2
δ(k − 2, h)

cos (
hπ

2
)

h!
+ 

1

2
δ(k − 2, h).                                                                                      (27) 

 والتحويل التفاضلي لشروط الابتدائية يكون 
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U(k, 0) = {
1     , k = 1

 (28)  خلاف ذلك      ,0

U(k, 1) = 0.                                                                            (29) 
 (:5مثال)

 .]5[الغير خطية معادلة كلاين غوردون  بفرض إن لدينا
utt − uxx + u

2 = 0                                                                       (32) 
 بشرط ابتدائي:

u(x, 0) = 1 + sin x  ,               ut(x, 0) = 0                                    (33) 
 حيث تكون الشروط الابتدائية المحولة علي النحو التالي:

U(k, 0) =

{
 
 

 
 

1              ,   k = 0
1

k
               ,   k = 1,5 

−
1

k
                ,    k = 3,7

0       ,        k = 2,4,6…    

                                                          (35) 

U(k, 1) = 0                                                           (36) 
 

 ( نحصل على35( في )36( و)35بالتعويض على التوالي بالصيغ في )

u(x, t) = ∑∑U(k, h)xkth
∞

h=0

∞

k=0

= 1 + (x −
x3

3!
+
x5

5!
− ⋯) + 

t2

2!
(−1 − 3x − x2 +

3x3

3!
+
x4

3
−
3x5

5!
−
2x6

45
+⋯) + 

t4

4!
(11x + 12x2 −

11x3

3!
−  4x4 +⋯) +⋯ 

 ومن الواضح إن هذا التقريب في شكل سلسلة .

 

 (.6مثال)

 التالية: غولدن-معادلة كلاين  نفرض ان لدينا معادلة
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utt − uxx +
π2

4
u + u2 = x2sin2 (

π

2
t)                                              (37) 

 بحيث تخضع لشرط ابتدائي التالي:

u(x, 0) = 0 , ut(x, 0) =  
π

2
x .                                                             (38) 

 ( وتكون كالتالي37نقوم بإجراء التحويل التفاضلي للمعادلة )
(h + 1)(h + 2)U(k, h + 2) − (k + 1)(k + 2)U(k + 2, h)+ 

π2

4
(k, h) +∑∑U(r, h − s)U(k − r, s).

h

s=0

k

r=0

 

=
1

2
δ(k − 2, h) −

1

2
δ(k − 2, h). 2h (

cos (h
π

2

h!
)                                       (39) 

 وأيضا نجري التحويل لشرط الابتدائي كالتالي:

 
U(k, 0) = 0                                                                                                 (40) 

U(k, 1) = {

π

2
,                   k = 1.  

خلاف ذلك          ,0
                                                            (41) 

u(x, t) =∑∑U(k, h)xkth =

∞

h=0

∞

k=0

 

x [
π

2
t −

(
π

2
t)3

3!
+
(
π

2
t)5

5!
− ⋯] = xsin (

π

2
t) 

 (.38(,)37وهذا يكون الحل الدقيق للمعادلتين )
( DTMالتفاضلي )وطريقة التحويل  ADM,VIM [18]غولدن و  -مقارنة بين قيم الحل لمعادلة كلاين

 (x,tللمتغيرين )
 

 
 

 



 احثيوش ، العابدــــــ ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ 83العدد ملحق  مجلة العلوم الشاملة   

 

644 
 

 ( 0جدول )
  Erro rDTM VIM Error Erro rADM DTM VIM ADM Exact value t=0.1 

x  

0.000000034 0.00000005 0.0000002  0.995000000 0.995000024 .9949999862 .9949999662 2.2 

0.0000572 0.00000007 0.00000003 1.093336821 1.093291179 .0932911321 1.093291101 0.1 

0.00000002 0.00000002 0.00000002 1.190602734 1.190503087 1.190502983 1.190502981 0.2 

0.00000001 0.00000005 0.00000005 1.285829872 1.285668848 1.28668610 1.286686101 0.3 

0.00000011 0.00000011 0.00000011 1.378073322 1.377844710 1.377844211 1.377844000 0.4 

0.00000001  0.00000001
  

0.00000001
  

1.466420573 1.466119219 1.466118315 1.466118311 0.5 

0.00000002 0.00000008
  

0.00000008
  

1.550000812 1.549621939 1.549620480 1.549620130 0.6 

0.00000004  0.00000005
  

0.00000005
  

1.627994045 1.627531694 1.627529538 1.627529344 0.7 

0.00000013  0.00000013
  

0.00000013
  

1.699640074 1.699084244 1.699081273 1.699081260 0.8 

0.00000001  0.00000002
  

0.00000002
  

1.764245622 1.763579356 1.763575490 1.763575472 0.9 

0.00000007  0.00000002
  

0.00000002
  

1.821201388 1.820382216 1.820382425 1.820382411 1.0 

 

 (3جدول )
  
Err
or 
DT
M  

Error VIM ADM  Error DTM VIM ADM Exact value t=0.2 

x 

0.00000005 0.00000003 0.0000003  0.980000000 0.980001577 0.979999116 .9949999112 2.2 

0.00000007 0.0000572 0.00000002 1.073725261 1.073726319 1.073723730 1.093291112 0.1 

0.00000002 0.00000002 0.00000003 1.166138050 1.166138050 1.166134875 1.190502981 0.2 

0.00000005 0.00000001 0.00000005 1.256328927 1.256331032 1.256326130 1.28668600 0.3 

0.00000011 0.00000011 0.00000011 1.343427256 1.343432104 1.343423788 1.377844210 0.4 

0.00000001  0.00000001
  

0.00000001
  

1.426598958 1.426608263 1.426594492 1.466118315 0.5 

0.00000008  0.00000002 0.00000008
  

1.505058688 1.505073495 1.505052082 1.549620460 0.6 
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0.00000005  0.00000004
  

0.00000005
  

1.578075355 1.578094808 1.578063673 1.627529530 0.7 

0.00000013  0.00000013
  

0.00000013
  

1.644678005 1.644997540 1.644954933 1.699081273 0.8 

0.00000002  0.00000001
  

0.00000002
  

1.705161053 1.705169916 1.705144628 1.703575490 0.9 

0.00000002  0.00000007
  

0.00000002
  

1.758088889 1.758066925 1.757998450 1.820382421 1.0 

 

 (5جدول )
  
Err
or 
DT
M  

  Error VIM ADM  Error DTM VIM ADM Exact value t=0.3 

x 

0.00000003 0.00000005 0.0002866  0.955000000 0.955017653 0.959499001 .9949999002 2.2 

0.0000572 0.00000007 0.0002895  1.041318399 1.041325485 1.041345652 1.093291111 0.1 

0.00000002 0.00000002 0.0002924  1.125970235 1.125974851 1.125945576 1.190502912 0.2 

0.00000001 0.00000005 0.0002954  1.208145667 1.208147932 1.208114007 1.286686102 0.3 

0.00000011 0.00000011 0.0002983  1.287081794 1.287088824 1.287943874 1.377844222 0.4 

0.00000001  0.00000001 0.0003136  1.362067708 1.362089477 1.362025218 1.466118312 0.5 

0.00000002 0.00000008
  

0.0003168  1.432448098 1.432497282 1.432404521 1.549620410 0.6 

0.00000004  0.00000005
  

0.0003200  1.497625423 1.497717706 1.497587424 1.627529532 0.7 

0.00000013  0.00000013
  

0.0003232  1.557060645 1.557215916 1.557040327 1.699081270 0.8 

0.00000001  0.00000002
  

0.0003264  1.610272513 1.610517519 1.610291023 1.763575480 0.9 

0.00000007  0.00000002
  

0.0003297  1.656835416 1.657208637 1.656928567 1.820382422 1.0 

 ولدنق–( مقارنة بين الحل الفعلي والحل التقريبي لمعادلة كلاين 5( وجدول )3( وجدول ) 2يمثل جدول )
والتفاضل المختزل الثنائي والحصول علي  تكرارات عددية ،كما  موضح  العمود الأول من اليسار يمثل 

 DTMيمثل والعمود الخامس  VIMوالعمود الرابع   ADMوالعمود الثاني القيم الفعلية والعمود الثالث لـ  xقيم 
ريقة طونلاحظ دقة والأعمدة  السادس والسابع والثامن تعطي الخطاء المطلق نسبة إلي القيم الفعلية ،

 .(8،0،4)في هذه الأمثلة من خلال النتائج العددية التي نراها في الجداول  التحويل التفاضلي
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 -الخلاصة:

لخطية والغير اغولدن -كلاين  معادلةفي هذا الورقة البحثية تم توضيح طريقة التحويل التفاضلي لحل       
خطية وأكدت الدراسة الحالية أن طريقة التحويل التفاضلي ثنائي قدم مزايا كبيرة ،وسهل علينا الحل ،من حيث 

نصل إلى حلول  ويمكننا أن قابليتها لتطبيق المباشر ، وفاعليتها الحسابية ودقتها من خلال الأمثلة المدروسة.
دلات التفاضلية الخطية وغير الخطية. فهي قادرة على تقليل حجم العمل مقارنة بالطرق دقيقة وتقريبية للمعا

الكلاسيكية مع الحفاظ على الدقة العالية التي تقدمها الطرق العددية التكرارية وقد يفتح الباب أمام تطبيقات 
 ( (  ( Mathematicla 8)النتاج السابقة تحصلنا عليها  من خلال استخدام برنامج  أوسع .

 التوصيات :

لدن قو -نوصي الباحثون والمهندسون باستخدام طرق أخري ولغات برمجة مختلفة، لحل معادلة كلاين 
ودراسة تطبيقاتها بالاخص نظرية المجال الكمومي لفهم دورها في وصف الجسيمات الأساسية والتفاعلات 

ي مجالات وإكمال الطريق  فى تقليل العمل حلول حسابية قادرة علالفزيائية، ومقارنة النتائج للوصول إلي 
 .العلوم المختلفة  
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