Fabrication and Performance evaluation of Cellulose Acetate Forward Osmosis Membrane (CAFSM) For Water Desalination
DOI:
https://doi.org/10.65405/p2715m64الكلمات المفتاحية:
أغشية أسيتات السليلوز المسطحة (CAFSM)، التناضح الأمامي (FO)، المعالجة الحراريةالملخص
يُعدّ عدم القدرة على تلبية احتياجات إمدادات المياه من أكبر التهديدات للوجود البشري. ولذلك، وفّرت عملية التناضح الأمامي (FO) بديلاً لتنقية المياه. تكمن ميزة استخدام FO في أنه يعمل عند ضغط هيدروليكي منخفض أو معدوم. في هذه الدراسة، صُنعت أغشية صفائحية مسطحة من أسيتات السليلوز (CAFSM) باستخدام 20% وزناً من أسيتات السليلوز، و48.33% أسيتون، و31.66% فورماميد، واختُبرت لعملية FO. ودُرست آثار زمن التبخر أثناء الصب. أزمنة التبخر المستخدمة في CAFSM هي 0، و30، و60، و90 ثانية. تم قياس تدفق الماء في CAFSM باستخدام محلول تغذية كلوريد الصوديوم بتركيز 0.5 مولار مع محاليل سحب مختلفة من كلوريد الصوديوم بتركيز 2 مولار وكلوريد المغنيسيوم بتركيز 2 مولار. وبلغ أعلى تدفق ماء 2.04 لتر/م²/ساعة باستخدام CAFSM المُحضر عند زمن تبخر 90 ثانية وباستخدام محلول سحب كلوريد الصوديوم بتركيز 2 مولار. وأظهر CAFSM المُحضر عند زمن تبخر 60 ثانية أقل قيمة لتدفق الماء، وهي 0.288 لتر/م²/ساعة. وقد حسّنت المعالجة الحرارية عند درجة حرارة 90 درجة مئوية تدفق الماء في CAFSM إلى 4.345 لتر/م²/ساعة.
التنزيلات
المراجع
Achilli, A., Cath, T. Y., & Childress, A. E. (2009). Power generation with pressure retarded osmosis: An experimental and theoretical investigation. Journal of Membrane Science, 343(1–2), 42–52. https://doi.org/10.1016/j.memsci.2009.07.006
Anka, F. H., & Balkus, K. J. (2013). Novel nanofiltration hollow fiber membrane produced via electrospinning. Industrial and Engineering Chemistry Research, 52(9), 3473–3480. https://doi.org/10.1021/ie303173w
Biswas, S., Adhikary, M., Alam, A., Islam, N., & Roy, R. (2024). Disparities in access to water, sanitation, and hygiene (WASH) services and the status of SDG-6 implementation across districts and states in India. Heliyon, 10(18), e37646. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e37646
Carter, N. T. (2013). Desalination and Membrane Technologies : Federal Research and Adoption Issues. CRS Report for Congress, 18.
Cath, T. Y., Childress, A. E., & Elimelech, M. (2006a). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1), 70–87. https://doi.org/https://doi.org/10.1016/j.memsci.2006.05.048
Cath, T. Y., Childress, A. E., & Elimelech, M. (2006b). Forward osmosis: Principles, applications, and recent developments. In Journal of Membrane Science (Vol. 281, Issues 1–2, pp. 70–87). https://doi.org/10.1016/j.memsci.2006.05.048
Chung, T. S., Zhang, S., Wang, K. Y., Su, J., & Ling, M. M. (2012). Forward osmosis processes: Yesterday, today and tomorrow. Desalination, 287, 78–81. https://doi.org/10.1016/j.desal.2010.12.019
Dova, M. I., Petrotos, K. B., & Lazarides, H. N. (2007). On the direct osmotic concentration of liquid foods. Part I: Impact of process parameters on process performance. Journal of Food Engineering, 78(2), 422–430. https://doi.org/10.1016/j.jfoodeng.2005.10.010
EFFECT OF HEAT TREATMENT ON THE PERFORMANCE AND STRUCTURAL DETAILS OF POLYETHERSULFONE ULTRAFILTRATION MEMBRANES. (n.d.).
Gao, L., Tang, B., & Wu, P. (2009). An experimental investigation of evaporation time and the relative humidity on a novel positively charged ultrafiltration membrane via dry–wet phase inversion. Journal of Membrane Science, 326(1), 168–177. https://doi.org/https://doi.org/10.1016/j.memsci.2008.09.048
Kookana, R. S., Drechsel, P., Jamwal, P., & Vanderzalm, J. (2020). Urbanisation and emerging economies: Issues and potential solutions for water and food security. Science of The Total Environment, 732, 139057. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139057
Lee, K. P., Arnot, T. C., & Mattia, D. (2011). A review of reverse osmosis membrane materials for desalination-Development to date and future potential. In Journal of Membrane Science (Vol. 370, Issues 1–2, pp. 1–22). https://doi.org/10.1016/j.memsci.2010.12.036
manjikian1967. (n.d.).
Nawi, N. I. M., Bilad, M. R., Anath, G., Nordin, N. A. H., Kurnia, J. C., Wibisono, Y., & Arahman, N. (2020). The water flux dynamic in a hybrid forward osmosis-membrane distillation for produced water treatment. Membranes, 10(9), 1–13. https://doi.org/10.3390/membranes10090225
Post, J. W., Veerman, J., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J., Nymeijer, K., & Buisman, C. J. N. (2007). Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. Journal of Membrane Science, 288(1), 218–230. https://doi.org/https://doi.org/10.1016/j.memsci.2006.11.018
Sairam, M., Sereewatthanawut, E., Li, K., Bismarck, A., & Livingston, A. G. (2011). Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination, 273(2), 299–307. https://doi.org/https://doi.org/10.1016/j.desal.2011.01.050
Seckler, D. William. (1998). World water demand and supply, 1990 to 2025 : scenarios and issues. International Water Management Institute.
Shao, J., Zhao, L., Chen, X., & He, Y. (2013a). Humic acid rejection and flux decline with negatively charged membranes of different spacer arm lengths and charge groups. Journal of Membrane Science, 435, 38–45. https://doi.org/10.1016/j.memsci.2013.01.063
Shao, J., Zhao, L., Chen, X., & He, Y. (2013b). Humic acid rejection and flux decline with negatively charged membranes of different spacer arm lengths and charge groups. Journal of Membrane Science, 435, 38–45. https://doi.org/10.1016/j.memsci.2013.01.063
Shimizu, Y. (1990). Ceramic membranes for bioprocesses. In Membrane (Vol. 15, Issue 4). https://doi.org/10.5360/membrane.15.179
Sun, L., Xu, K., Gui, X., Liu, L., Lin, Q., Song, X., & Wang, Z. (2021). Reduction–responsive sulfur–monoterpene polysulfides in microfiber for adsorption of aqueous heavy metal. Journal of Water Process Engineering, 43. https://doi.org/10.1016/j.jwpe.2021.102247
Yeh, H. M., Cheng, T. W., & Tsai, J. W. (2006). Ultrafiltration on sizing agent solution in tubular-membrane module. Chemical Engineering Communications, 193(6), 661–674. https://doi.org/10.1080/009864490515621
Yeo, R., & Seong, W. (2014a). Charaterization of Draw Solution in Forward Osmosis Process for the Treatment of Synthetic River Water. January.
Yeo, R., & Seong, W. (2014b). Charaterization of Draw Solution in Forward Osmosis Process for the Treatment of Synthetic River Water. January.
Zhang, H., Wang, X., Wang, L., Lv, Y., Zhang, Z., & Wang, H. (2021). Identifying the fouling behavior of forward osmosis membranes exposed to different inorganic components with high ionic strength. Environmental Science and Pollution Research, 28(34), 46303–46318. https://doi.org/10.1007/s11356-021-14170-4
Zhao, S., Zou, L., & Mulcahy, D. (2012). Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute. Desalination, 284, 175–181. https://doi.org/10.1016/j.desal.2011.08.053
Zhao, S., Zou, L., Tang, C. Y., & Mulcahy, D. (2012a). Recent developments in forward osmosis: Opportunities and challenges. In Journal of Membrane Science (Vol. 396, pp. 1–21). https://doi.org/10.1016/j.memsci.2011.12.023
Zhao, S., Zou, L., Tang, C. Y., & Mulcahy, D. (2012b). Recent developments in forward osmosis: Opportunities and challenges. In Journal of Membrane Science (Vol. 396, pp. 1–21). https://doi.org/10.1016/j.memsci.2011.12.023
Zhu, P., & Falls, I. (2008). Ceramic Membranes for Permeation.
التنزيلات
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2026 مجلة العلوم الشاملة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









