نُظُم الطاقة الكهروضوئية وتطبيقاتها الزراعية: رؤية مستقبلية
DOI:
https://doi.org/10.65405/n05m7074الكلمات المفتاحية:
الطاقة الكهرو زراعية – استخدام الأراضي – نمط الطاقة الكهروضوئية – الطاقة الكهروضوئية المتكاملة – الطاقة الشمسية – تقييم كفاءة الالواح الشمسية – كفاءة استخدام الماء بالألواح الشمسية.الملخص
نتيجةً لتزايد الطلب على الطاقة الكهروضوئية كعنصرٍ أساسي في استراتيجية التحول نحو الطاقة المستدامة في العديد من بلدان العالم، والتي تستخدم الأراضي الزراعية بشكلٍ مستدام، وللمحافظة على المناظر الطبيعية ورفاهية الإنسان، برزت نماذج ومناهج وقطاعات سوقية جديدة تأخذ في الاعتبار منظوماتٍ متكاملة. ومن ضمن هذه المنظومات المتكاملة الطاقة الكهروضوئية الزراعية كخيارٍ واعدٍ للغاية لتحقيق فوائد في العلاقة بين الغذاء والطاقة والماء. وقد تم تطوير مشاريع تجريبية في جميع أنحاء العالم، ونتج عن ذلك تبادلٌ للمعلومات والخبرات بين تلك الدول للوصول إلى حلولٍ متنوعةٍ ومناسبة، ثم تصميمها للوصول إلى النطاق التجاري استنادًا إلى اعتبارات الكفاءة في استخدام الماء والطاقة والإنتاجية الزراعية، مع الأخذ بعين الاعتبار الاهتمام بالآثار البيئية المرتبطة التي تؤثر في اختيار التصاميم المحددة والمناسبة للحفاظ على البيئة الزراعية والطبيعية.
لذلك، تستعرض هذه الدراسة خيارات التصميم التكنولوجية والمكانية المتاحة التي تُمكّن من تحديد السمات الرئيسية للنظام من منظورٍ متعدد التخصصات.
التنزيلات
المراجع
1- نضال نصار (2022): أنظمة الطاقة الشمسية الكهرو ضوئية الزراعية (agri PV). ماهي؟ وما أهميتها؟، ذاسولارست : مايو ، لبنان.
. المراجع الإنجليزية:
1- Adeh,E.H., Good, S.P., Calaf,M., Higgins, C.W.(2019): Solar PV Power Potential is Greatest Over Croplands. Sci.Rep.9, 1-6. [CrossRef]
2- AL-Saidi, M., & Lahham, N. (2019): Solar energy farming as a development innovation for vulnerable water basins. Dev. Pract.9,1-6. [CrossRef]
3- Andrew, A.C., Higgins, C.W., Smallman, M.A., Graham, M., Ates, S. (2021): Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System. Front.Sustain. Food Syst.5,1-12. [CrossRef]
4- Asa'a ,S., Reher,T., Rongé, J., Diels,J., Poortmans, J., . Radhakrishnan,H.S., van der Heide, A., Van de Poel, B.& Daenenو M. (2024): A multidisciplinary view on agrivoltaics: Future of energy and agriculture, Renewable and Sustainable Energy Reviews, Aug, Voluome: :200. https://doi.org/10.106/j.rser.2004.114515.
5- Babatunde, O. M., Denwingwe, L.H., Adedooja, O.S., Babatunde, D.E. Gbadamosi, S.L., (2019): Harnessing renewable energy for sustainable agricultural applications. Int.J. Energy Econ. Policy. 9,308-315. [CrossRef]
6- Bryce,E.(2019):A tech revolution will help farmers harvest sunshine with their crops. WIRED ,Jan, https://www.wired.com/story/energy-agrivoltic-farms
7- Carranza, G. A., Malheiros, T. F., Faria, L. O., Silva, A. C. D., & Mierzwa, J. C. (2022). Effects of a Floating Photovoltaic System on the Water Evaporation Rate in the Passaúna Reservoir, Brazil. Energies, 15(17), 6274. https://doi.org/10.3390/en15176274
8- Chamara, R. Beneragama, C. (2020): Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A Review. J. Sol. Energy Res. 5, 417-431.
9- Chen, N., Wu, P., Gao, Y., Ma, X. (2018): Review on Photovoltaic Agriculture Application and Its Potential on Grape Farms in Xinjiang, China, Adv. Sci. Eng.10,73-81.
10- Cuppari, R.J., Higgins, C.W.,Characklis, G.W.)2021): Agrivoltaics and weather risk: A diversification strategy for landowners. Appl. Energy.291,116809. [CrossRef]
11- Belos, D. (2025): Agrivoltaics: Benefits and applications in agriculture. February, Bright
12- D’Adamo, I., Rossa, P.(2020): How do you see infrastructure? Green energy to provide economic growth after COVID-19. Sustainability. 12, 4738. [CrossRef]
13- Dos Santos, C.N.L. (2020): Agrivoltaic System: A Possible Synergy btween Agriculture and Solar Energy, KTH Royal Institute of Technology: Stockholm, Sweden.
14- Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y. (2011): Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy. 36, 2725-2732. [CrossRef]
15- FAO (2002): World Agriculture: Towards 2015/2030 Summary Report., FAO: Rome, Italy.
16- Fraunhofer ISE (2019): Agrivoltaics: Opportunities for Agriculture and The Energy Transition. https://www.ise.fraunhofer.de/content/doments/publications/studies/APV-Guideline.bdf.
17- Fumey, D., Bellacicco,S., Lopez Velasco, G., & Sourd, F. (2024): Dynamic agrivoltaics: An agronomical tool to protect crops from climate change – Feedback from 15 years of research. Conference Paper. Retrieved from. https://www.researchgate.net/publication/387168047
18- Gad, A., & El-Din, M. A. (2023). Impact of Floating Photovoltaic Systems on Water Evaporation from Lake Nasser, Egypt. Water, 15(4), 635. https://doi.org/10.3390/w15040635
19- Goetzberger, A., & Zastrow,A., (1982) : On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Jornal of Solar Energy,1(1),55-69.
20- Goetzberger, A., Zastrow, A. (1982): on the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy. 1, 55-69. [CrossRef]
21- GoGreenner. (n.d.) (2025): Agrivoltaics: Maximizing Land Use with Green Energy. Retrieved, May 12, from https://gogreenner.com/maximizing-land-use-with-agrivoltaics/
22- Guo,L, Han,J.,Otieno,A.W. (2013): Design and Simulation of a Sun Tracking Solar Power System. In Proceedings of the 120th ASEE Annual Conference and Exposition, Atlana, GA, USA, 23-26, June, P.7854.
23- Hernandez, R.R., Armstrong, A., Burney, J., Ryan, G., Moore-O Leary, K., Diedhiou, I., Grodsky, S.M., Saul-Gershenz, L., Davis, R., Macknick, J., etal. (2019): Techno-ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560-568. [CrossRef]
24- Higgins, C.W., Najm, M.A. (2020): An Organizing Principle for the Water-Energy-Food Nexus. Sustainability. 12,8135. [CrossRef]
25- Kostik, N., Bobyl, A., Rud, V.,Salamov, I. (2020): The potential of agrivoltaic systems in the conditions of southern regions of Russian Federation. IOP Conf. Ser. Earth Environ. Sci.578,012047. [CrossRef]
26- Kumar, S., Saravaiya, S.N., Pandey, A.K. (2021): Precision Farming and Protected Cultivation: Concepts and Applications, 1 st ed., CRC Press: Oxon, UK, ISBN 9781032052762.
27- Kussul, E., Baydyk, T., Garcia, N., Herrera, G.V., (2020): Department, A.V.C.L. Combinations of solar Concentrators with Agricultural Plants.J. Environ. Sci. Eng. B . 9,168-181. [CrossRef]
28- Leon,A., Ishiara, K.N. (2018): Assessment of new functional units for agrivoltaic systems. J. Environ. Manage. 226,493-498. [CrossRef]
29- Li, C.,Wang, H.,Miao,H.,Ye, B. (2017): The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China. Appl. Energy. 190,204-212.
30- Li, P.C., Ma, H. (2020): Evaluating the environmental Impacts of the water-energy-food nexus with a life-cycle approach. Resour. Conserv. Recycl. 157, 104789. [CrossRef]
31- Lindhardt, K. M., Møller, J. K., & Kessler, M. R. (2023): Vertical Agrivoltaics in a Temperate Climate: Exploring Technical, Agricultural, Meteorological, and Social Dimensions.Energies, 16(9), 3572. https://doi.org/10.3390/en16093572
32- Lytle, W., Meyer, T.K., Tanikella, N.G., Burnham, L., Engel, J., Schelly, C., Pearce, J.M. (2021): Conceptual Design and Rationale for New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. J., Schelly,C., Prod.282,124476. [CrossRef]
33- Macknick ,J., Hartmann, H., Barron-Gafford ,G., Beatty.B., etal(2022): The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons From the In SPIRE Research Study, NREL, Aug, 1:80. https://www.nrel.gov/docs/fy22osti/83566pdf.
34- Marrou, H., Wery, J., Dutour, L., Dupraz, C. (2013): Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 44, 54-66. [CrossRef]
35- Matulić, D., Andabaka, Ž., Radman, S., Fruk, G., Leto, J., Rošin, J., Rastija, M., Varga, I., Tomljanović, T., Čeprnja, H., & Karoglan, M. (2023): Agrivoltaics and Aquavoltaics: Potential of Solar Energy Use in Agriculture and Freshwater Aquaculture in Croatia. Agriculture, 13(7), 1447. https://doi.org/10.3390/agriculture13071447
36- Mavani, D.D., Chauhan, P.M., Joshi, V. (2019): Beauty of Agrivoltaic System regarding double utilization of same piece of land for Generation of Electricity & Food Production. Glob. Sci. J. 10,118-148.
37- Miao, R., Khanna, M. (2019): Harnessing Advances in Agricultural Technologies to Optimize Resource Utilization in the Food-Energy-Water Nexus. Annu. Rev. Resour. Econ. Forthcom.12, 6585. [CrossRef]
38- Moswetsi, G., Fanadzo, M., Ncube, B. (2017): Review Article Cropping Systems and Agronomic Management Practices in smallholder Farms in South Africa: Constraints, Challenges and Opportunities. J. Agron. 16, 51-67. [CrossRef]
39- National Renewable Energy Laboratory (NREL). (2022). Agrivoltaics Research. Retrieved from https://www.nrel.gov/docs/fy22osti/83566.pdf
40- Proctor, K.W., Murthy, G.S., Higgins, C.W. (2021): Agrivoltaics align with green new deal goals while supporting investment in the us rural economy. Sustainability.13, 137. [CrossRef]
41- Sani Ibrahim, M., Kumari, R. (2020): Emerging Solar Energy Technologies for Sustainable Farming: A Review. J. Xi’an Univ. Archit. Technol. 12, 5328-5336.
42- Sekiyama, T., Nagashima, A., (2019): Solar sharing for both food and clean energy production: performance of agrivoltaic systems for corn, a typical shade-intolerant crop. Environments. 6,65. [CrossRef]
43- Tajima,M., & Lida,T.( 2021): Evolution of a grivoltaic farms in Japan. AIP, Conference Proceedings, 2361(1),030002. https://doi.org/10.1063/5.0054674.
44- Trommsdorff, M., Gruber, S., Keinath, T., Hopf, M., Hermann, C., Schönberger, F., Gudat, C., Boggio, A. T., Gajewski, M., & Högy, P. (2024): Agrivoltaics: Opportunities for Agriculture and the Energy Transition – A Guideline for Germany. Fraunhofer Institute for Solar Energy Systems ISE. Retrieved from https://www.ise.fraunhofer.de/en/publications/studies/agrivoltaics-opportunities-for-agriculture-and-the-energy-transition.htm
45- Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., Ryckewaert, M.,Christophe, A. (2017): Inccreasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy. 206, 1495-1507. [CrossRef]
46- Welsek ,A.,Bauerle, A., Zilkeli, S., Lewandowski, I., Hogy, P.(2021): Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System. Agronomy, 11,733. [CrossRef]
47- Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Hogy,P.(2019): Agrophotovoltic system: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 39,1-20. [CrossRef]
48- Weselek, J., Ehmann. M., Zikeli, M., Lewandowski, F, Schindele, J., and Hogy A. Hogy (2021): Agri-Photovoltaics: A Systematic Review Across Disciplines, Renewable and Sustainable Energy Reviews, May.Voluome :141.
49- Widmer, J., Christ, B., Grenz, J., & Norgrove, L. ( 2024 ) : Agrivoltaics, a promising new tool for electricity and food production: A systematic review, Renewable and Sustainable Energy Reviews, Volume :192, March .
50- Santra, P., Pande, P.C.,Kumar, S., Mishra, D., Singh, R.K.( 2017): Agri-voltaics or solar farming: The concept of integrating solar PV based electricity generation and crop production in a single land use system. Int. J. Renew. Energy Res. 7, 694-699.
التنزيلات
منشور
إصدار
القسم
الرخصة

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.








