تأثير حمض الهيوميك ومستخلص الطحالب البحرية على النمو الخضري وجودة الشعير

المؤلفون

  • محفوظ عبدالحفيظ عبدالرازق كلية الموارد الطبيعية وعلوم البيئة جامعة درنة -ليبيا ، المؤلف
  • رجاء علي الشريف كلية الموارد الطبيعية وعلوم البيئة جامعة درنة – ليبيا ، المؤلف

الكلمات المفتاحية:

حمض الهيوميك- مستخلص الأعشاب البحرية- النمو الخضري- المحصول وجودة المحصول

الملخص

أجريت التجربة الحقلية في مدينة شحات – الجبل الأخضر– ليبيا خلال الموسم الشتوي 2023-2024 لدراسة تأثير حمض الهيوميك ومستخلص الطحالب البحرية علي النمو الخضري وجودة الشعير (Hordeum vulgare, L.) صنف “جيزة 129 .“تصميم التجربة كان القطع المنشقة مرة واحدة بثلاث مكررات. تم ترتيب أربعة معدلات حمض الهيوميك (الكنترول، 50، 100، 150 كجم/هكتار) في القطع الرئيسية وأربعة تركيزات من مستخلص الأعشاب البحرية (الكنترول، 4، 8 و 12 مل/ لتر) تم ترتيبها في القطع تحت الرئيسية وتحتوي كل مكررة على 8 معاملات. الصفات المدروسة هي النمو الخضري (ارتفاع النبات، الكلوروفيل الكلي (SPAD)، مساحة الورقة (سم2) وجودة المحصول )عدد السنابل / م2، عدد السنابل/ سنبلة، وزن 1000 حبة، محصول الحبوب (طن/ هكتار)، المحصول البيولوجي (طن/ هكتار)، ودليل الحصاد (%) ومحتوى البروتين (%). أوضحت النتائج أن زيادة معدل حامض الهيوميك حتى 150 كجم/هكتار أدى إلى زيادة معنوية في جميع صفات النمو الخضري المدروسة (ارتفاع النبات، الكلوروفيل الكلي والمساحة الورقية) وجودة المحصول (عدد السنابل/م2، عدد السنابل/سنبلة، وزن 1000 حبة ومحصول الحبوب (طن/هكتار) والمحصول البيولوجي (طن/ هكتار) ودليل الحصاد (%) ومحتوى البروتين (%)، مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لهذه الصفات. من ناحية أخرى، سجل مستخلص الأعشاب البحرية حتى 12 مل/لتر أعلى القيم لجميع النمو الخضري الذي تمت دراستها (ارتفاع النبات، الكلوروفيل الكلي والمساحة الورقية)، وجودة المحصول (عدد السنابل/م2، عدد السنيبلات/سنبلة، وزن 1000 حبة ومحصول الحبوب (طن/ هكتار) والمحصول البيولوجي (طن/ هكتار) ودليل الحصاد (%) ومحتوى البروتين (%)، مقارنة بمعاملة الكنترول التي سجلت أقل قيم لهذه الصفات. التفاعل بين حمض الهيوميك ومستخلص الطحالب البحرية علي النمو الخضري وجودة الشعير (.Hordeum vulgare, L) صنف "جيزة 129" كان عالي المعنوية في جميع صفات النمو الخضري وجودة المحصول التي تمت دراستها في هذه الدراسة.

التنزيلات

تنزيل البيانات ليس متاحًا بعد.

المراجع

A.O.A.C., (1990). Official Methods of Analysis. 20th Ed. Association of official analysis Chemists, Arlington, Virginia, USA, No 984.

Abdel-Gawad, A.A., K.A. El-Shouny, S.A. Saleh and M.A. Ahmed (1987). Partition and migration of dry matter in newly cultivated wheat cultivars. Egypt. J. Agron., 12 (1-2): 1- 16.

Abd-Elmoniem, E.A. and A.S. Abd-Allah (2008). Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines. Am. J. Agric. Environ. Sci., 4: 427–433.

Akinremi, O.O., H.H. Janzen, R.L. Lemke and F.J. Larney (2000). Response of canola, wheat and green beans to leonardite additions. Canadian J. Soil Sci., 80: 437-443.

Ali, O., A. Ramsubhag and J. Jayaraj (2020). Phytoelicitor activity of Sargassum vulgare and Acanthophora spicifera extracts and their prospects for use in vegetable crops for sustainable crop production. J. Appli. Phycology, 33(1): 639–651.

Al-Karablieh, E. and A. Jabarin (2010). Different rangeland management systems to reduce livestock feeding costs in arid and semi-arid areas in Jordan. Z Ausl Landwirtsch, 49: 91-109.

Altindal, D. (2019). Effect of seaweed extract (se) applications on seed germination characteristics of wheat in salinity conditions. Int. J. Agric. Life Sci., 3(1): 115-120.

AL-Ubeidi, M., H. AL-Rashedy and A. Abdul-Jabar (2012). Effect of the different seaweed extract (Seamino) concentrations on growth and seed chemical composition of two wheat varieties. Rafidain J. Sci., 23(2):100-13.

Amiri, F.Z., M.K. Souri, J.M. Ghanbari and T.A. Mohammadi (2022). Influence of humic acid application on onion growth characteristics under water deficit conditions. J. Plant Nutr., 45(7): 1030-40.

Ampong, K., M.S. Thilakaranthna and L.Y. Gorim (2022). Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4: 848621.

Anwar, S., F. Iqbal, W. A. Khattak, M. Islam, B. Iqbal and S. Khan (2016). Response of wheat crop to humic acid and nitrogen levels. EC Agric., 3 (1): 558-565.

Ashok, V., N. Vijayanand and S. Rathinavel (2004). Bio-fertilizing efficiency of seaweed liquid extract of Hydroclathrus clathratus on Sorghum vulgare. Seaweed Res. Utiln., 26:181-6.

Aziz, N.G., M.H. Mahgoub and H.S. Siam (2011). Growth, flowering and chemical constituents performance of Amaranthus tricolor plants as influenced by seaweed (Ascophyllum nodosum) extract application under salt stress conditions. J. Appl. Sci. Res., 7: 1472–1484

Baum, M., S. Grando, G. Backes, A. Jahoor, A. Sabbagh and S. Ceccarelli (2003). QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross “Arta” × H. Spontaneum 41-1. Theoretical and Appli. Genetics, 107: 1215–1225.

Bayat, H., F. Shafie, M.H. Aminifard and S. Daghighi (2021). Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci Horti., 279: 109912.

Beleggia, R., D.B.M. Ficco, F.M. Nigro, V. Giovanniello, S.A. Colecchia, I. Pecorella and P. De Vita, (2021). Effect of sowing date on bioactive compounds and grain morphology of three pigmented cereal species. Agron., 11: 591.

Bijanzadeh, E., Y. Eman and M. Perssarakli (2020). Biochemical response of water stressed Triticale to humic acid and Jasmonic acid. Plant Nutr., 44: 252-269.

Canellas, L. P., N. O. A. Canellas, L. E. S. Luiz Eduardo, F. L. Olivares and A. Piccolo (2020). Plant chemical priming by humic acids. Chem. Biol. Technol. Agric., 7: 1-12.

Castellanos-Barriga, L.G., F. Santacruz-Ruvalcaba, G. Hernández-Carmona, E. Ramírez-Briones and R.M. Hernández-Herrera (2017). Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of Mung bean (Vigna radiata). J. Appl. Phycol., 29: 2479–2488

Chanthini, K.M.P., S. Senthil-Nathan, G.S. Pavithra, P. Malarvizhi, P. Muru¬gan, A. Deva-Andrews, M. Janaki, H. Sivanesh, R. Ramasubrama¬nian and V. Stanley-Raja (2022) Aqueous seaweed extract alleviates salinity-induced toxicities in rice plants (Oryza sativa L.) by modulating their physiology and biochemistry. Agric., 12: 2049.

Chojnacka, K. and S. K. Kim (2013). Introduction of marine algae extracts. In: S.-K. Kim and K. Chojnacka, (Eds) Marine Algae Extracts- processes, products and applications, part 2. Wiley-VCH

Dawood, M.G., Y.R. Abdel-Baky, M.E.S. El-Awadi and G. S. Bakhoum (2019). "Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application," Bull. Nat. Res. Cent., 43: 10-19.

Dinçsoy, M. and F. Sönmez (2019). The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutri., 42: 2757–2772.

Du Jardin, P. (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic., 196:3–14.

Ebrahimi, M., M.K. Souri, A. Mousavi and N. Sahebani (2021). Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chem. Biol. Technol. Agric., 8(1): 19.

Ekin, Z. (2019). "Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture," Sustainability, 3417-3425.

El-Hamdi, Kh. H., E. M. Selim and H. I. M. Husein (2012). Integrated impacts of humic acid, halotolerant N2 fixers and nitrogen application on wheat yied (Triticum aestivum L.), yield component and nutrient uptake. J. Soil Sci. and Agric. Eng., Mansoura Univ., 3 (12): 1263 – 1274.

El-Sheekh, M., M. Ismail and M. Hamouda (2016) Influence of some brown seaweed extracts on germination and cytological responses of Trigonella foenum-graecum L. Biotech. Indian J. Res., 12: 1–12.

El-Sheikh, M.A., S.N. Sleim and H.S. Abou-Elnasr (2020). The Effect of Seaweed Extracts on Chemical Composition of Tomato Plant (Solanum lycopersicum). Alex. Sci. Exch. J., 41: 523-529.

EL-Tanahy, A.M.M., N.M. Marzouk, A.R. Mahmoud and A.H. Ali (2019). Influ¬ence of humic acid application and yeast extract on growth and productivity of Okra plants. Mid. East J. Agric. Res., 8: 418–424

Fahmi, A.H., M.O.S. Sallume, A.H. Aswad, A.L. Abdulrahman, G.J. Hamdi and M.A. Abood (2020). Interaction effect of potassium fertilizer, humic acid and irrigation intervals on growth and yield of wheat. Res. Crops. 21: 31-35.

FAO. (2019). Barley cultivated area and production. Food and Agriculture Organization of the United Nation.

FAOSTAT, (2019)."Food and Agriculture Organization of the United Nations, Iraq," Available online: http://www.fao.org/faostat/en/, accessed on 10 .

FAOSTAT, (2021). Food and Agriculture Organization of the United Nations. Statistical Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 2 December).

Finnie, J.F. and J. van Staden (1985). Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J. Plant Physiol., 120: 215–222.

Freiwan, M. and M. Kadioglu (2008). Spatial and temporal analysis of climatological data in Jordan. Int. J. Climatol, 28(4): 521-35.

Fuentes, M., R. Baigorri, G. González-Gaitano and J. M. García-Mina (2018). New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. J. Soils Sediments, 18: 1389-1399.

Geng, L., M. Li, G. Zhang and L. Ye (2022). Barley: A potential cereal for producing healthy and functional foods. Food Qual. Saf., 6, fyac012.

Gollan, J.R. and J.T. Wright (2006). Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Marine and Freshwater Res., 57(7):685-94.

Guo, T., C. Horvath, L. Chen, J. Chen and B. Zheng (2020). Understanding the Nutrient Composition and Nutritional Functions of Highland Barley (Qingke): A Review. Trends Food Sci. Technol., 103:109–117.

Gupta, S., W.A. Stirk, L. Plačková, M.G. Kulkarni, K. Doležal and J. Van Staden (2021). Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). J. Plant Physiol., 262: 153437

Gürsoy, M. (2020). Effect of Chitosan pretreatment on seedling growth and antioxidant enzyme activity of safflower (Carthamus tincto¬rius L.) cultivars under saline conditions. Appl. Ecol. Environ. Res., 18: 6589–6603.

Gürsoy, M. (2022a). Biostimulant applications in agriculture. 7th Inter¬national Zeugma Conference on Scientific Research, January 21–23, Gaziantep/ Türkiye, :41–47

Gürsoy, M. (2022b). Role of biostimulant priming applications on ger¬mination, growth and chlorophyll content of sunflower (Helian¬thus annuus L.) cultivars under salinity stress. Selcuk J. Agric. Food Sci., 36: 75–81.

Hajiboland, R., A. Joudmand, N. Aliasgharzad, R. Tolrá and C. Poschenrieder (2019). "Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley," Crop Pasture Sci., (70): 218.

Hsu, H.H. (1986). Chelates in plant nutrition. In: Foliar feeding of plants with amino acid chelates (Ashmead, H.D. , H.H. Ashmead , G.W. Miller and H.H. Hsu, Noyes Publications, Park Ridge, New Jersey, USA), 209-217.

Hurtado, A.Q., D.A. Yunque, K. Tibubos and A.T. Critchley (2009). Use of Aca¬dian Marine plant extract powder from Ascophyllum nodosum in tissue culture of Kappaphycus varieties. J. Appl. Phycol., 21: 633– 639.

Issa, R., M. Boras and R. Zidan (2019). Effect of seaweed extract on the growth and productivity of potato plants. SSRG Int. J. Agric. Environ. Sci., 6(2):83-89.

Jarošová, M., B. Klejdus, J. Kováčik, P. Babula and J. Hedbavny (2016). Humic acid protects barley against salinity. Acta Physiol. Plantarum, 38: 1-9.

Jing, L., Z. Zhengfeng, C. Zhenjiang, F. W. James, M. Kamran, C. Taixiang and C. Chunjie (2022). Inoculation of barley (Hordeum vulgare) with the endophyte epichloë bromicola affects plant growth, and the microbial community in roots and rhizosphere soil. J. Fungi, 8(172): 2–22.

Kandil, A.A., A.E.M. Sharief, S.E. Seadh and D.S.K. Altai (2016). Role of humic acid and amino acids in limiting loss of nitrogen fertilizer and increasing productivity of some wheat cultivars grown under newly reclaimed sandy soil. Int. J. Adv. Res. Biol. Sci., 3(4): 123-136.

Kasim, W.A., E.A.M. Hamada, N.G.S. El-Din and S.K. Eskander (2015). Influence of seaweed extracts on the growth, some metabolic activities and yield of wheat grown under drought stress. Int. J. Agron. Agric. Res., 7(2): 173-189.

Kasim, W.A., K. Saad-Allah and M. Hamouda (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int. J. Agric. Biol., 18: 653–660.

Ketehouli, T., K.F.I. Carther, M. Noman, F.W. Wang, X.W. Li and H.Y. Li (2019). Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of CBL gene family in regulating salt stress response. Agron., 9: 687.

Ko, J., C. T. Ng, S Jeong, J.H. Kim, B. Lee and H. Y. Kim (2019). Impacts of regional climate change on barley yield and its geographical variation in South Korea. Int. Agrophys., 33: 81–96.

Kocira, S., A. Szparaga, M. Kuboń, E. Czerwińska and T. Piskier (2019). Morphological and biochemical responses of Glycine max (L.) Merr. To the use of seaweed extract. Agron., 9: 93.

Kulkarni, M.G., K.R.R. Rengasamy, S.C. Pendota, J. Gruz, L. Plačková, O. Novák, K. Doležal, J. Van Staden (2019). Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. N Biotech., 48:83–89.

Laskosky, J. D., A. A. Mante, F. Zvomuya, I. Amarakoon and L. Leskiw (2020). A bioassay of long -term stockpiled salvaged soil amended with biochar, peat, and humalite. Agrosyst. Geosci. Environ., 3: e20068.

Manal, F.M., A.T. Thalooth, A.G. Ahmed, M.H. Mohamed and T.A. Elewa (2016). Evaluation of the effect of chemical fertilizer and humic acid on yield and yield components of wheat plants (Triticum aestivum, L.) grown under newly reclaimed sandy soil. Int. J. Chem. Tech. Res., 9 (8): 154-161.

Mohammad, A.M.A. (2013). The effect of using different concentration of soluamine and NaCl on the growth and yield components of two kinds wheat (Triticum aestivum L.). J. Res. Coll. Basic Educ., 12(2): 703-723.

Mohy El-Din, S.M. (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings. Egypt J. Exp. Biol., 11:31–39.

Moustafa, E.S., E.S.E. El-Sobky, H.I. Farag, M.A. Yasin, A. Attia and M.O. Rady (2021). Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agron., 11: 717

Nardi, S., D. Pizeghello, A. Muscdo and A. Vianello (2002). Physiological effects of humic substances on higher plants. Soil Biochem., 34: 1527- 1536.

Nardi, S., M. Schiavon and O. Francioso (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26: 2256

Nowak, R., M. Szczepanek, K. Błaszczyk, J. Kobus-Cisowska, A. Przybylska-Balcerek, K. Stuper-Szablewska, J. Poberez˙ny, M.B. Hassan-pouraghdam and F. Rasouli (2023). Impact of the farming system and amino-acid biostimulants on the content of carotenoids, fatty acids, and polyphenols in alternative and common barley genotypes. Agron., 13: 1852. 1-21

Parađiković, N. (2019). Biostimulants research in some horticultural plant species-a review. Food Energy Secu., 8(2).

Radwan, F.I., M.A. Gomaa, I.F. Rehab and S.I.A. Adam (2015). Impact of humic acid application, foliar micronutrients and biofertilization on growth, productivity and quality of wheat (Triticum aestivum, L.). Mid. East J. Agric. Res., 4 (2): 130-140.

Ramadan, K.M.A., H.S. El-Beltagi, T.A.A. Abd El-Mageed, H.S. Saudy, H.H. Al-Otaibi and M.A.A. Mahmoud (2023). The changes in various physio-biochemical parameters and yield traits of faba bean due to humic acid plus 6-benzylaminopurine application under deficit irrigation. Agron., 13:1227

Rashid, K., K.C. Senthil and H.P.M. Mohammed (2017). Healthcare Benefits of Hordeum vulgare L (Barley): A Phyto-Pharmacological Review. J. Pharma. Pharmacodynamics, 9(4): 207-210.

Rayorath, P., W. Z. Khan, R. Palanisamy, S. L. MacKinnon, R. Stefanova, S. D. Hankins, A. T. Critchley and B. Prithiviraj (2008). Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J. Plant Growth Regu., 27(4): 370–379.

Saidimoradi, D., N. Ghaderi and T. Javadi (2019) Salinity stress mitiga¬tion by humic acid application in strawberry (Fragaria x anan¬assa Duch). Sci. Hort., 15: 256108594.

Salvi, L., C. Brunetti, E. Cataldo, A. Niccolai, M. Centritto, F. Ferrini and G.B. Mattii (2019). Effects of Ascophyllum nodosum extract on Vitis vinifera: consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem., 139: 21- 32.

Shahbazi, F., M.S. Nejad, A. Salimi and A. Gilani (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. Int. J. Agric. Crop Sci., 8(3): 283-287.

Shukry, W.M., M.E. Abu-Ria and S.A. Abo-Hamed (2023). The efficiency of humic acid for improving salinity tolerance in salt sensitive rice (Oryza sativa): growth responses and physiological mechanisms. Gesunde Pflanzen. https://doi.org/10.1007/s10343-023-00885-6

Siebenhandl, S., H. Grausgruber, N. Pellegrini, D. Del Rio, V. Fogliano, R. Pernice and E. Berghofer (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55: 8541–8547.

Sivasankari, S., V. Venkatesalu, M. Anantharaj and M. Chandrasekaran (2006). Effect of seaweed extracts on the growth and biochemical constituents of Vigna sinensis. Bioresou. Techn., 97(14): 1745-51.

Snedecor, G.W. and G.W. Cochran (1990). Statistical Methods. 8th Ed Iowa State Univ. Press Ames, Iowa. USA.

Ulukan, H. (2008). Effect of soil applied humic acid at different sowing times on some yield components in wheat (Triticum spp.) hybrids Int. J. Bot., 4(2): 164-175.

Van Tol de Castro, T. A., R. L. L. Berbara, O. C. H. Tavares, D. F. Mello and G. E. G. Pereira (2021). Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem., 162: 171–184.

Wali, A.M., A. Shamseldin, F. Radwan, E. Abd ElLateef and N. Zaki (2018). Response of barley (Hordeum vulgare) cultivars to humic acid, mineral and biofertilization under calcareous soil conditions, Mid. East J. Agric. Res., 7: 71-82.

Wightman, F., E. Schneider and K. Thimann (1980). Hormonal factors controlling the initiation and development of lateral roots: II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiologia Plantarum., 49(3): 304-14.

Yang, F., C. Tang and M. Antonietti, (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev., 50: 6221–6239.

التنزيلات

منشور

2025-11-09

كيفية الاقتباس

تأثير حمض الهيوميك ومستخلص الطحالب البحرية على النمو الخضري وجودة الشعير. (2025). مجلة العلوم الشاملة, 9(36), 277-291. https://cjos.histr.edu.ly/index.php/journal/article/view/346