The Impact of Laser Irradiation Durations on Zinc Oxide Nanostructures' Crystallinity, Surface Morphology, and Electrical Properties in Palladium/Glass
DOI:
https://doi.org/10.65405/.v10i37.592Keywords:
Pd, ZnO, LACBD, and irradiation of laser.Abstract
The LACBD technique is used to make ZnO nanostructures and thin layers of palladium (Pd) on glass. Crystallinity, surface morphology, and electrical characteristics were investigated at 20, 25, and 30 minutes of laser radiation. According to the XRD patterns, the generated ZnO-NSs are polycrystalline with a hexagonal/wurtzite structure and a preferential orientation along the c-axis, as observed on 002 planes. The thin surface was examined using a FE-SEM. The outcome indicates that the orientation and spatial growth of the nanostructure significantly depend on the presence of the Pd buffer layer. The findings showed that the polycrystalline ZnO-NSs' surface structures and topographical properties were significantly influenced by the duration of the laser irradiation. Keithley 2400 used to charactraze the photoelectric effects. Additionally, the efficiency of Pd/ZnO NSs/Pd in UV detection has been researched. Both in low light and UV radiation, the photodetector exhibits outstanding stability and reactivity.
Downloads
References
1. Talapin, Dmitri V., Nikolai Gaponik, Holger Borchert, Andrey L. Rogach, Markus Haase, and Horst Weller. "Etching of colloidal InP nanocrystals with fluorides: photochemical nature of the process resulting in high photoluminescence efficiency." The Journal of Physical Chemistry B, 106, no. 49 (2002): 12659-12663.
2. Özgür, Ümit, Ya I. Alivov, Chunli Liu, A. Teke, MAnReshchikov, S. Doğan, V. C. S. J. Avrutin, S-J. Cho, and and H. Morkoç. "A comprehensive review of ZnO materials and devices." Journal of applied physics, 98, no. 4 (2005): 11.
3. Choudhary, Shipra, Kavita Sahu, Aditi Bisht, BiswarupSatpati, and Satyabrata Mohapatra. "Rapid synthesis of ZnO nanowires and nanoplates with highly enhanced photocatalytic performance." Applied Surface Science, 541 (2021): 148484.
4. Minne, S. C., S. R. Manalis, and C. F. Quate. "Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators." Applied Physics Letters, 67, no. 26 (1995): 3918-3920.
5. Chen, T. L., D. S. Ghosh, D. Krautz, S. Cheylan, and V. Pruneri. "Highly stable Al-doped ZnO transparent conductors using an oxidized ultrathin metal capping layer at its percolation thickness." Applied Physics Letters, 99, no. 9 (2011): 181.
6. X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, S. Maeng, S.H. Kim, Y. J. Choi, D. S. Lee, N. M. Park, J. Park, W.I. Milne,"ZnO film for application in surface acoustic wave device." In Journal of Physics: Conference Series, vol. 76, no. 1, p. 012035. IOP Publishing, 2007.
7. Yuan, Hongtao, and Yao Zhang. "Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD." Journal of crystal growth, 263, no. 1-4 (2004): 119-124.
8. Zhang, Xian-Hua, Su-Yuan Xie, Zhi-Yuan Jiang, Xuan Zhang, Zhong-Qun Tian, Zhao-XiongXie, Rong-Bin Huang, and Lan-Sun Zheng. "Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system." The Journal of Physical Chemistry B, 107, no. 37 (2003): 10114-10118.
9. Ghafouri, Vahid, Akbar Ebrahimzad, and Mohsen Shariati. "The effect of annealing time and temperature on morphology and optical properties of ZnO nanostructures grown by a self-assembly method." Scientia Iranica, 20, no. 3 (2013): 1039-1048.
10. Xu, Sheng, Chen Xu, Ying Liu, Youfan Hu, Rusen Yang, Qing Yang, Jae‐Hyun Ryou et al. "Ordered nanowire array blue/near‐UV light emitting diodes." Advanced materials, 22, no. 42 (2010): 4749-4753.
11. Wang, Zhong Lin, Rusen Yang, Jun Zhou, Yong Qin, Chen Xu, Youfan Hu, and Sheng Xu. "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezophototronics." Materials Science and Engineering: R: Reports, 70, no. 3-6 (2010): 320-329.
12. Zimmler, Mariano A., Federico Capasso, Sven Müller, and Carsten Ronning. "Optically pumped nanowire lasers: invited review." Semiconductor Science and Technology, 25, no. 2 (2010): 024001.
13. Wang, Zhong Lin. "Oxide nanobelts and nanowires-growth, properties and applications.” Journal of nanoscience and nanotechnology, 8, no. 1 (2008): 27-55.
14. Wang, Zhong Lin. "Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology." ACS nano 2, no. 10 (2008): 1987-1992.
15. Zhang, Chunfeng, Fan Zhang, Tian Xia, Nitin Kumar, Jong-in Hahm, Jin Liu, Zhong Lin Wang, and Jian Xu. "Low-threshold two-photon pumped ZnO nanowire lasers." Optics express, 17, no. 10 (2009): 7893-7900.
16. Ma, Xiangyang, Jingwei Pan, Peiliang Chen, Dongsheng Li, Hui Zhang, Yang Yang, and Deren Yang. "Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si." Optics Express, 17, no. 16 (2009): 14426-14433.
17. Govender, Kuveshni, David S. Boyle, Paul O’Brien, David Binks, Dave West, and Dan Coleman. "Room‐temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition." Advanced Materials, 14, no. 17 (2002): 1221-1224.
18. Govender, Kuveshni, David S. Boyle, Paul O’Brien, David Binks, Dave West, and Dan Coleman. "Room‐temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition." Advanced Materials, 14, no. 17 (2002): 1221-1224.
19. Zimmler, Mariano A., Daniel Stichtenoth, Carsten Ronning, Wei Yi, Venkatesh Narayanamurti, Tobias Voss, and Federico Capasso. "Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass." Nano letters, 8, no. 6 (2008): 1695-1699.
20. Wang, Wen-Zhong, Bao-Qing Zeng, Jian Yang, Bed Poudel, J. Y. Huang, Michael J. Naughton, and Z. F. Ren. "Aligned ultralong ZnO nanobelts and their enhanced field emission." Advanced Materials, 18, no. 24 (2006): 3275-3278.
21. Zhou, Jun, Yudong Gu, Youfan Hu, Wenjie Mai, Ping-Hung Yeh, Gang Bao, Ashok K. Sood, Dennis L. Polla, and Zhong Lin Wang. "Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization." Applied physics letters, 94, no. 19 (2009): 191103.
22. Yao, B. D., Y. F. Chan, and N. Wang. "Formation of ZnO nanostructures by a simple way of thermal evaporation." Applied physics letters, 81, no. 4 (2002): 757-759.
23. Heo, Y. W., V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming. "Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy." Applied physics letters, 81, no. 16 (2002): 3046-3048.
24. Hong, Jung-Il, Joonho Bae, Zhong Lin Wang, and Robert L. Snyder. "Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays." Nanotechnology, 20, no. 8 (2009): 085609.
25. Chiou, Wen-Ting, Wan-Yu Wu, and Jyh-Ming Ting. "Growth of single crystal ZnO nanowires using sputter deposition." Diamond and Related Materials, 12, no. 10-11 (2003): 1841-1844.
26. Sui, X. M., C. L. Shao, and Y. C. Liu. "White-light emission of polyvinyl alcohol∕ ZnO hybrid nanofibers prepared by electrospinning." Applied Physics Letters, 87, no. 11 (2005): 113115.
27. Wu, J‐J., and S‐C. Liu. "Low‐temperature growth of well‐aligned ZnO nanorods by chemical vapor deposition." Advanced materials, 14, no. 3 (2002): 215-218.
28. Kim, Sang-Woo, Shizuo Fujita, and Shigeo Fujita. "ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles." Applied Physics Letters, 86, no. 15 (2005): 153119.
29. Vayssieres, Lionel, Karin Keis, Sten-Eric Lindquist, and Anders Hagfeldt. "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO." The Journal of Physical Chemistry B, 105, no. 17 (2001): 3350-3352.
30. Hu, J. Q., X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee. "Characterization of zinc oxide crystal whiskers grown by thermal evaporation." Chemical physics letters, 344, no. 1-2 (2001): 97-100.
31. Ghafouri, Vahid, Akbar Ebrahimzad, and Mohsen Shariati. "The effect of annealing time and temperature on morphology and optical properties of ZnO nanostructures grown by a self-assembly method." Scientia Iranica, 20, no. 3 (2013): 1039-1048.
32. Lahewil, Abdulwahab Salem Zaroug, Naser M. Ahmed, and Nurul Zahirah Noor Azman. "Structural and optical properties of ZnO nanoflakes/Al/glass via laser-assisted chemical bath deposition (LACBD) technique." Applied Physics A, 127, no. 11 (2021): 1-8.
33. Lahewil, Abdulwahab SZ, Y. Al-Douri, U. Hashim, and N. M. Ahmed. "Structural and optical investigations of cadmium sulfide nanostructures for optoelectronic applications." Solar Energy, 86, no. 11 (2012): 3234-3240.
34. Lahewil, Abdulwahab SZ, Y. Al-Douri, U. Hashim, and N. M. Ahmed. "Structural, analysis and optical studies of cadmium sulfide nanostructured." Procedia engineering, 53 (2013): 217-224.
35. Lahewil, Abdulwahab SZ, Y. Al-Douri, U. Hashim, and Naser Mahmoud Ahmed. "Structural and morphological studies of cadmium sulfide nanostructures." In Advanced Materials Research, vol. 795, pp. 228-232. Trans Tech Publications Ltd, 2013.
36. Huang, Jinyu, Jiaxi Zhou, Zhenhua Liu, Xuejin Li, YoufuGeng, Xiaoqing Tian, Yu Du, and Zhengfang Qian. "Enhanced acetone-sensing properties to ppb detection level using Au/Pd-doped ZnO nanorod." Sensors and Actuators B: Chemical, 310 (2020): 127129.
37. Zhang, C. M., T. Meng, S. Y. Yao, S. Huang, and D. D. Wang. "Effect of Synthesis Conditions on the Growth of ZnO Nanorods via the Solution Deposition Method." International Conference on Power Electronics and Energy Engineering PEEE, (2015): 219-221.
38. Young, Sheng-Joue, and Yen-Lin Chu. "Characteristics of Field Emitters on the Basis of Pd-Adsorbed ZnO Nanostructures by Photochemical Method." ACS Applied Nano Materials, 4, no. 3 (2021): 2515-2521.
39. Ye, Zhefei, Jinze Li, Mingjun Zhou, Huiqin Wang, Yue Ma, PengweiHuo, Longbao Yu, and Yongsheng Yan. "Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline." Chemical Engineering Journal, 304 (2016): 917-933.
40. Khalafi, Tariq, FoadBuazar, and Kamal Ghanemi. "Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants." Scientific reports, 9, no. 1 (2019): 1-10.
41. Xiangcun Li, Gaohong He, Gongkui Xiao, Hongjing Liu, Mei Wang, Synthesis, and morphology control of ZnO nanostructures in microemulsions, Journal of Colloid and Interface Science, 333, (2009), 465-473.
42. Das, Abinash, and Ranjith G. Nair. "Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanrods." Journal of Alloys and Compounds, 817 (2020): 153277.
43. Das, Abinash, P. Malakar, and Ranjith G. Nair. "Engineering of ZnO nanostructures for efficient solar photocatalysis." Materials Letters, 219 (2018): 76-80.
44. Umar, Ahmad, Caue Ribeiro, A. Al-Hajry, Yoshitake Masuda, and Y. B. Hahn. "Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: growth mechanism, structural, and optical properties." The Journal of Physical Chemistry C, 113, no. 33 (2009): 14715-14720.
45. Lai, Youlei, Ming Meng, Yifu Yu, Xitao Wang, and Tong Ding. "Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance." Applied Catalysis B: Environmental, 105, no. 3-4 (2011): 335-345.
46. Look, David C. "Recent advances in ZnO materials and devices." Materials Science and Engineering: B, 80, no. 1-3 (2001): 383-387.
47. Zyoud, S. H., Ahmed, N. M., Lahewil, A. S. Z., & Omar, A. F. B. (2022). Micro spot ZnO Nanotubes Using Laser Assisted Chemical Bath Deposition: A Low-Cost Approach to UV Photodetector fabrication. Sensors and Actuators A: Physical, 113485.
48. Moumen, Abderrahim, Navpreet Kaur, Nicola Poli, Dario Zappa, and Elisabetta Comini. "One dimensional ZnO nanostructures: Growth and chemical sensing performances." Nanomaterials, 10, no. 10 (2020): 1940.
49. Vincenzina, Strano, MariaGrazia Greco, Enrico Ciliberto, and Salvo Mirabella. "ZnO Microflowers Grown by Chemical Bath Deposition: A Low-Cost Approach for Massive Production of Functional Nanostructures." Chemosensors, 7, no. 4 (2019): 62.
50. Boruah, Buddha Deka. "Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors." Nanoscale Advances, 1, no. 6 (2019): 2059-2085.
51. Al-Hilli, Safaa, and Magnus Willander. "The pH response and sensing mechanism of n-type ZnO/electrolyte interfaces." Sensors, 9, no. 9 (2009): 7445-7480.
52. Das, Abinash, S. K. Nikhil, and Ranjith G. Nair. "Influence of surface morphology on photocatalytic performance of zinc oxide: a review." Nano-Structures& Nano-Objects, 19 (2019): 100353.
53. Li, Yuqiang, Zheng, W., & Huang, F. (2020). All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX, 1(1), 1-11.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.








