Regulation of Macrophage Metabolism by Traditional PlantBased Extracts Under High-Glucose and Inflammatory Stress: An in vitro study
DOI:
https://doi.org/10.65405/.v10i37.521Keywords:
Diabetes mellitus, High glucose, Metabolic syndrome, Artemisia afra, Cinnamon verum, Fenugreek., InflammationAbstract
Background: Chronic inflammation associated with diabetes often lead to abnormal lipid
levels and oxidative stress, both of which play a key role in the progression of metabolic
syndrome. Researchers continue to investigate medications aimed at preventing or
managing diabetes-related complications. This study investigated the therapeutic potential of
three herbal extracts by assessing their impact on macrophage oxidative bioactive marker
expression in metabolic disorders and comparing the results with those of conventional
Western medicine. Method: In this study, the following inhibited concentrations were
applied to treat LPS-stimulated inflammation in high-glucose mimic cell cultures: Artemisia
afra (200 µg/ml), Cinnamon verum (250 µg/ml), Fenugreek (2500 µg/ml), and metformin
(200 µg/ml). Results: LPL is significantly overexpressed, while SOD-2 activity is
suppressed in the presence of high glucose, both with and without stimulation by LPSactivated macrophage cells. A. afra and C. verum extracts promoted cell growth under high
glucose conditions more effectively than Fenugreek and metformin. Cinnamon verum
significantly enhances the antioxidant enzyme SOD-2 and effectively downregulates the
LPL enzyme under high glucose conditions, both in the presence and absence of stimulation.
Compared to Artemisia afra, fenugreek, or metformin. In conclusion: These herbs help
regulate metabolic markers in diabetic patients may help prevent diabetes progression, treat
atherosclerosis, and manage chronic inflammation while supporting glucose control. Future
investigations are essential to identify and understand the bioactive molecules in these herbal
therapies involved in this protocol.
Downloads
References
1. Tabatabaei-Malazy, O., Larijani, B., & Abdollahi, M. (2015). Targeting
metabolic disorders by natural products. Journal of Diabetes &
Metabolic Disorders, 14 (1), 1-21.
2. Kina-Tanada, M., Sakanashi, M., Tanimoto, A., Kaname, T., Matsuzaki,
T., Noguchi, K., ... & Tsutsui, M. (2017). Long-term dietary nitrite and
nitrate deficiency causes the metabolic syndrome, endothelial
dysfunction and cardiovascular death in mice. Diabetologia, 60 (6),
1138-1151.
3. Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021).
Dyslipidemia and diabetes mellitus: Role of lipoprotein species and
Comprehensive Journal of Science الشاملة العلوم مجلة
عدد خاص بالمؤتمر الدولي الثالث للعلوم والتقنية (2025 .NOV (,)37 (Issue ,)10 (Volume
SICST2025, www.sicst.ly )2025نوفمبر )،(37 )العدد ،(10 )المجلد
ردمد: 3014-6266 3014-6266 :ISSN
المجلد )10(، العدد )37(، )نوفمبر2025( ردمد: 3014-6266 :ISSN 3-1345
interrelated pathways of lipid metabolism in diabetes mellitus. Current
Opinion in Pharmacology, 61, 21-27.
4. 504. Vaziri, N. D. (2016). Disorders of lipid metabolism in nephrotic
syndrome: mechanisms and consequences. Kidney international, 90 (1),
41-52.
5. Lan, G., Xie, W., Li, L., Zhang, M., Liu, D., Tan, Y. L., ... & Tang, C. K.
(2016). MicroRNA-134 actives lipoprotein lipase-mediated lipid
accumulation and inflammatory response by targeting angiopoietin-like 4
in THP-1 macrophages. Biochemical and biophysical research
communications, 472 (3), 410-417.
6. Gonzalez, L. L., Garrie, K., & Turner, M. D. (2018). Type 2 diabetes–an
autoinflammatory disease driven by metabolic stress. Biochimica et
Biophysica Acta - Molecular Basis of Disease, 1864 (11), 3805-3823.
7. Manish Lamoria, M. D., Yadav, N., & Ayana, A. M. (2024).
Pathophysiology of Atherosclerosis and its adverse effect: Systematic
Review.
8. Narasimhulu, C. A., Fernandez-Ruiz, I., Selvarajan, K., Jiang, X.,
Sengupta, B., Riad, A., & Parthasarathy, S. (2016). Atherosclerosis—do
we know enough already to prevent it?. Current Opinion in
Pharmacology, 27, 92-102.
9. Kersten, S. (2014). Physiological regulation of lipoprotein lipase.
Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of
Lipids, 1841 (7), 919- 933.
10.Li, Y., He, P. P., Zhang, D. W., Zheng, X. L., Cayabyab, F. S., Yin, W.
D., & Tang, C. K. (2014). Lipoprotein lipase: from gene to
atherosclerosis. Atherosclerosis, 237 (2), 597-608.
11.Cervantes, J., & Kanter, J. E. (2023). Monocyte and macrophage foam
cells in diabetes-accelerated atherosclerosis. Frontiers in cardiovascular
medicine, 10, 1213177.
12.Lillis, A. P., Muratoglu, S. C., Au, D. T., Migliorini, M., Lee, M. J.,
Fried, S. K., ... & Strickland, D. K. (2015). LDL receptor-related protein1 (LRP1) regulates cholesterol accumulation in macrophages. Public
library of science one, 10 (6), e0128903.
13.Zhang, X., Ye, Q., Gong, D., Lv, Y., Cheng, H., Huang, C., ... & Tang,
C. (2017). Apelin- 13 inhibits lipoprotein lipase expression via the
APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophagederived foam cells. Acta Biochimica et Biophysica Sinica, 49 (6), 530-
540.
14.Wang, J., Ding, N., Chen, C., Gu, S., Liu, J., Wang, Y., ... & Li, Y.
(2025). Adropin: a key player in immune cell homeostasis and regulation
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.








