حلول الموجة المنفردة لمعادلة فوم الغير الخطية في الفيزياء الرياضية

Authors

  • عواطف هدية منصور أبوقفة قسم الرياضيات، كلية العلوم والموارد الطبيعية، جامعة الجفارة، الجفارة، ليبيا , Author
  • خالد على امحمد العرفي قسم الرياضيات، كلية العلوم، جامعة المرقب، المرقب، ليبيا , Author

DOI:

https://doi.org/10.65405/.v10i37.484

Abstract

In the present study, two analytical approaches—the projective Riccati equation method as well as the expansion method—are employed to derive novel soliton solutions along with various exact waveforms of the nonlinear FAOM equation in fluid mechanics. The obtained solutions include bell-shaped, anti-bell, kink, anti-kink, and periodic wave profiles. A comparative analysis with previously established results is also undertaken. Furthermore, several graphical representations of the derived exact solutions have been produced with the aid of Maple software.

Downloads

Download data is not yet available.

References

1] T. Islam, M. A. Akbar and A. K. Azad, The Traveling wave solutions to some nonlinear

fractional partial differential equations through the rational (

????

????

) −expansion method, J.

Ocean Eng. Sci 3(1) (2018) 76-81.

2] E. M. E. Zayed, The (

????

????

) −expansion method and its applications to some nonlinear

evolution equations in the mathematical physics, J. Appl. Math. Comput.,30 (2009) 89--

Comprehensive Journal of Science الشاملة العلوم مجلة

عدد خاص بالمؤتمر الدولي الثالث للعلوم والتقنية (2025 .NOV (,)37 (Issue ,)10 (Volume

SICST2025, www.sicst.ly )2025نوفمبر )،(37 )العدد ،(10 )المجلد

ردمد: 3014-6266 3014-6266 :ISSN

المجلد )10(، العدد )37(، )نوفمبر2025( ردمد: 3014-6266 :ISSN 3-1911

103.

3] A. Bekir, Application of the (

????

????

) −expansion method for nonlinear evolution equations,

Phys. Lett. A, 372 (2008) 3400--3406.

4] N. A. Kudryashov, A note on the (

????

????

) −expansion method, Appl. Math. Comput., 217

(2010) 1755--1758.

5] M. Izadi, A combined approximation method for nonlinear foam drainage equation, Scientia

Iranica B (2022) 29(1), 70-78.

6] E. M. E. Zayed and K. A. E. Alurrfi, Extended generalized (

????

????

) −expansion method for

solving the nonlinear quantum Zakharov--Kuznetsov equation, Ricerche mat., 65 (2016)

235-254.

7] G. Xu, Extended auxiliary equation method and its applications to three generalized NLS

equations, Abst. Appl. Anal., Vol. 2014, Article ID 541370, 7 pages.

8] E. M. E. Zayed and K. A. E. Alurrfi, Extended auxiliary equation method and its

applications for finding the exact solutions for a class of nonlinear Schrödinger-type

equations, Appl. Math. Comput. 289 (2016) 111-131.

9] X. Zeng ,X. Yong, A new mapping method and its applications to nonlinear partial

differential equations, Phys. Lett. A 372 (2008) 6602-6607.

10] E. M. E. Zayed and A.-G. Al-Nowehy, Solitons and other exact solutions for a class of

nonlinear Schrödinger-type equations, Optik - Int. J. Light and Electron Optics, 130

(2017) 1295-1311.

11] E. M. E. Zayed and K. A. E. Alurrfi, Solitons and other solutions for two nonlinear

Schrödinger equations using the new mapping method, Optik - Int. J. Light and Electron

Optics, 144 (2017) 132-148.

12] R. Conte and M. Musette, Link between solitary waves and projective Riccati equations,

Phys. A: Math. Cen. 25 (1992) 2609-2623.

13] E. M. E. Zayed and K. A. E. Alurrfi, The generalized projective Riccati equations method

for solving nonlinear evolution equations in mathematical physics, Abst. Appl. Analy., Vol.

2014, Article ID 259190, 10 pages.

14] E. M. E. Zayed and K. A. E. Alurrfi, The generalized projective Riccati equations method

and its applications for solving two nonlinear PDEs describing microtubules, Int. J. Phys.

عنوان البحث --------------------------------------الباحث

المجلد )10(، العدد )37(، )نوفمبر2025( ردمد: 3014-6266 :ISSN 3-1912

Sci., 10 (2015) 391-402.

15] G. X. Zhang, Z. B. Li and Y. S. Duan, Exact solitary wave solutions of nonlinear wave

equations, Science in China A., 44 (2001), pp. 396-401.

16] Z.Y. Yan, Generalized method and its application in the higher-order nonlinear

Schrödinger equation in nonlinear optical fibres, Chaos, Solitons Fractals, 16 (2003) 759-

766.

17] E.Yomba, The General projective Riccati equations method and exact solutions for a class

of nonlinear partial differential equations, Chin. J. Phys., 43 (2005) 991-1003.

18] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A 224 (1996) 77--84.

19] Z. Yan and V. V. Konotop, Exact solutions to three-dimensional generalized nonlinear

Schr¨odinger equations with varying potential and nonlinearities, Phys. Rev. E 80 (2009)

036607.

20] Z. Yan, Nonautonomous rogons in the inhomogeneous nonlinear Schrödinger equation

with variable coefficients, Phys. Lett. A, 374 (2010) 672-679.

21] Z. Yan, Localized analytical solutions and parameters analysis in the nonlinear dispersive

Gross-Pitaevskii mean-field GP (????, ????) model with space-modulated nonlinearity and

potential, Stud. Appl. Math., 132 (2014) 266-284.

22] Y. Chen , Z. Yan, The Weierstrass elliptic function expansion method and its applications

in nonlinear wave equations, Chaos, Solitons and Fractals, 29 (2006) 948-964.

23] E. M. E. Zayed, A. M. Shahoot and K. A. E. Alurrfi, The (

????

????

,

????

????

) −expansion method and

its applications for constructing many new exact solutions of the higher-order nonlinear

Schrödinger equation and the quantum Zakharov--Kuznetsov equation, Opt. Quant.

Electron., 50 (2018), doi.org/10.1007/s11082-018-1337-z.

24] E M E Zayed and Abdul-Ghani Al-Nowehy Optik 127 4970 (2016).

25] Q Zhou, Q Zhu, M Savescu, A Bhrawy and A Biswas Proc. Rom. Acad. Ser. A 16 152

(2015)

26] Hira Tariq et al., A numerical approach for the nonlinear temporal conformable fractional

foam drainage equation, Asian-European Journal of Math. Vol. 14, No. 6 (2021),

doi.org/10.1142/s1793557121500893.

27] M. T. Darvishi, M. Najafi and M. Najafi, Traveling wave solutions fore foam drainage equation by modified F-exponsion method, Food Puplic Health 2(1) (2012) 6-10.

Downloads

Published

2025-11-25

How to Cite

حلول الموجة المنفردة لمعادلة فوم الغير الخطية في الفيزياء الرياضية. (2025). Comprehensive Journal of Science, 10(37), 1897-1912. https://doi.org/10.65405/.v10i37.484