Optimizing Service Quality through Adaptive 5G Network Slice Management
DOI:
https://doi.org/10.65405/.v10i37.431Keywords:
5G Network Slicing, Adaptive Resource Allocation, Ultra-Reliable Low Latency Communications (URLLC), Massive Machine Type Communications (mMTC), Quality of Service (QoS).Abstract
This paper presents a comprehensive investigation into optimizing Quality of Service in 5G networks through
adaptive network slice management, with a concentrated focus on Ultra-Reliable Low Latency Communications
(URLLC) and Massive Machine-Type Communications (mMTC), where the core contribution lies in the
development and rigorous evaluation of dynamic resource allocation algorithms that intelligently and
continuously adjust slice configurations in real time to satisfy the stringent and heterogeneous performance
demands of diverse applications. Leveraging advanced mathematical modeling, simulation experiments, and
state-of-the-art machine learning techniques, the study achieves significant improvements in latency, throughput,
and less packet loss over conventional static allocation strategies. Results demonstrate that adaptive slicing not
only maximizes network efficiency but also enhances user experience by effectively prioritizing critical URLLC
traffic and robustly supporting vast mMTC device deployments. This research lays a foundational framework for
next-generation 5G architectures, empowering service providers to deliver highly customized, superior-quality
connectivity. By addressing the complex challenges posed by diverse service requirements, the work
fundamentally advances flexible, reliable, and scalable 5G infrastructures, enabling transformative applications
in industrial automation, smart cities, and the Internet of Things.
Downloads
References
[1] Qureshi HN, Manalastas M, Zaidi SMA, Imran A, Al Kalaa MO. Service Level Agreements for 5G and Beyond: Overview, Challenges and Enablers of 5G-Healthcare Systems. IEEE Access. 2021 Jan 5;9:1044-1061. https://doi.org/10.1109/access.2020.3046927 .
[2] Huwaytim Alanazi, M. (n.d.). ”Machine Learning-based Secure 5G Network Slicing: A Systematic Literature Review”. In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 14, Issue 12). www.ijacsa.thesai.org
[3] Andr´e Perdig˜ao, Jos´e Quevedo, Rui L. Aguiar, ”Automating 5G network slice management for industrial applications, Computer Communications”, Volume 229, 2025, 107991, ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2024.107991.
[4] Sulaiman, M., Ahmadi, M., Sun, B., Saha, N., Salahuddin, M. A., Boutaba, R., Saleh, A. (2024). MicroOpt: Model-driven Slice Resource Optimization in 5G and Beyond Networks.
http://arxiv.org/abs/2407.18342 .
[5] Jalalian, Azad; Yousefi, Saleh; Kunz, Thomas (2023-06-01). ”Network slicing in virtualized 5G Core with VNF sharing”. Journal of Network and Computer Applications. 215: 103631.
https://doi:10.1016/j.jnca.2023.103631 .
[6] Jain, R. (n.d.). Introduction to Network Function Virtualization (NFV). http://www.cse.wustl.edu/ jain/cse570-18/ .
[7] Emblasoft Test and Measurement AB, ”Understanding 5G QoS: How 5G QoS mechanisms relate to 3GPP standards”. Hammarbybacken 27, 30 Stockholm, Sweden, https://emblasoft.com/blog/understanding-5g-qos-how-5g-qos-mechanisms-relate-to-3gppstandards.
[8] Rost, P.; Mannweiler, C.; Michalopoulos, D. S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Holland, O.; Tayade, S.; Han, B. (2017). ”Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks”.
[9] IEEE Communications Magazine. 55 (5): 72–79. arXiv:1704.02129. Bibcode:2017arXiv170402129R. https://doi:10.1109/MCOM.2017.1600920.
[10] Jalalian, Azad; Yousefi, Saleh; Kunz, Thomas (2023-06-01). ”Network slicing in virtualized 5G Core with VNF sharing”. Journal of Network and Computer Applications. 215: 103631.
https://doi:10.1016/j.jnca.2023.103631.
[11] Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J. J.; Lorca, J.; Folgueira, J. (2017). ”Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges”.
[12] IEEE Communications Magazine. 55 (5): 80–87. arXiv:1703.04676. Bibcode:
2017arXiv170304676O. https://doi:10.1109/MCOM.2017.1600935
[13] Zhu, Kun; Hossain, Ekram (2016). ”Virtualization of 5G Cellular Networks as a Hierarchical Combinatorial Auction”. IEEE Transactions on Mobile Computing. 15 (10): 2640–2654. arXiv:1511.08256. https://doi:10.1109/tmc.2015.2506578
[14] X4000 Communications PTY LTD,” 5G Quality of Service”, 2025. https://www.x4000.com/5gqos
[15] Berger, J. (n.d.). QoS and QoE in 5G networks. https : //www.itu.int/en/ITU−T/Workshops−and − Seminars/qos/201908/Documents/JensBergerP resentation1.pdf
[16] Manish Mangal,”How Does Network Slicing Differ from QoS?” CTO, Network Services, Industry Thought Leadership,April, 2020 https://www.samenacouncil.org/thought-leadership-read?id=151
[17] Emblasoft Test and Measurement AB,”Understanding 5G QoS: How 5G QoS mechanisms relate to 3GPP standards” , Hammarbybacken 27 Stockholm, Sweden, 2024,
https://emblasoft.com/blog/understanding-5g-qos-how-5g-qos-mechanisms-relate-to-3gppstandards
[18] Laura Panizo, Mar´ıa-del-Mar Gallardo, Francisco Luque-Schempp, Pedro Merino, Runtime monitoring of 5G network slicing using STAn, Journal of Logical and Algebraic Methods in Programming, Volume 145, 2025, 101059, ISSN 2352-2208, https://doi.org/10.1016/j.jlamp.2025.101059 .
[19] Jalalian, Azad; Yousefi, Saleh; Kunz, Thomas (2023-06-01). ”Network slicing in virtualized 5G Core with VNF sharing”. Journal of Network and Computer Applications. 215: 103631.
https://doi:10.1016/j.jnca.2023.103631. ISSN 1084-8045 .
[20] A. Awad, A. Mohamed, C.-F. Chiasserini, and T. Elfouly, “Network association with dynamic pricing over d2d-enabled heterogeneous networks,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2017, pp. 1–6.
[21] F. Z. Yousaf, M. Gramaglia, V. Friderikos, B. Gajic, D. Von Hugo, B. Sayadi, V. Sciancalepore, and M. R. Crippa, “Network slicing with flexible mobility and qos/qoe support for 5g networks,” in IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2017, pp. 1195–1201.
[22] Alashjaee AM, Kushwaha S, Alamro H, Hassan AA, Alanazi F, Mohamed A. 2024. ”Optimizing 5G network performance with dynamic resource allocation, robust encryption and Quality of Service (QoS) enhancement” . PeerJ Computer Science 10:e2567 https://doi.org/10.7717/peerj-cs.2567
[23] Candal-Ventureira, D., R´ua-Est´evez, J. M., Fondo-Ferreiro, P., Gil-Casti˜neira, F., Fern´andez-Barciela, A., Gonz´alez-Casta˜no, F. J. , Di´eguez-Pazo, E., Fern´andez-Ferreira, L. (2025). 5G Network Slicing as a Service Enabler for the Automotive Sector. Engineering Reports, 7(1).
https://doi.org/10.1002/eng2.13024
[24] 5G PPP Architecture Working Group View on 5G Architecture (Version 2.0). (2017).
[25] Grings, F. H., Bruno, G. Z., Prade, L. R., Both, C. B., Brito, J. M. C. (2025). NASP: Network Slice as a Service Platform for 5G Networks. http://arxiv.org/abs/2505.24051
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.








