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Abstract 

   This work presents advanced methodologies for the improvement of the Jacobi method by 

incorporating Gauss-Seidel iterative schemes [1][2]. The Jacobi method, though simple to use 

[3][4], usually suffers from slow convergence, especially for large-scale linear systems [5]. In 

this regard, a hybrid scheme is presented that utilizes the strengths of both the Jacobi and 

Gauss-Seidel methods [6][7]. The important techniques that form the basis of this study include 

successive over-relaxation (SOR) to accelerate the convergence [2][8], adaptive step-sizing 

based on residual monitoring [9][10], and preconditioning techniques that enhance the 

numerical properties of the linear systems [11][12]. Furthermore, the effect of reordering 

equations for improved convergence rates is also considered [11]. Numerical experiments 

performed in the context of this study show that these enhancements significantly reduce the 

number of iterations required for acceptable solutions, thus enhancing computational efficiency 

[2][13]. In this context, the proposed hybrid scheme outperforms the traditional Jacobi and 

Gauss-Seidel methods for several scenarios and provides a robust solution for practitioners 

working in applied mathematics and engineering disciplines [2].  

Keywords: Jacobi Method, Gauss-Seidel Method, Iterative Methods, Linear Systems, 

Convergence Analysis, Successive Over, Relaxation (SOR), Preconditioning. 

Introduction 

The Jacobi method is a classical iterative algorithm used to approximate the solution of a 

system of linear equations [1][2]. It is particularly useful for large systems where direct 

methods are computationally expensive [2]. The method iteratively refines an initial guess, 

using values from the previous iteration to compute new approximations [1]. However, the 

Jacobi method often suffers from slow convergence, especially for large-scale linear systems 

[3][4]. To address this limitation, hybrid approaches that integrate the strengths of both Jacobi 

and Gauss-Seidel methods have been developed [3][5]. The Gauss-Seidel method, an iterative 

technique for solving linear systems, updates the solution vector step-by-step, using the most 

recent values to improve convergence [5]. 

This study explores advanced strategies for enhancing the Jacobi method by incorporating 

Gauss-Seidel iterative techniques [5]. These strategies include the implementation of 

mailto:naima.kafu@uoz.edu.lyـ
mailto:naima.kafu@uoz.edu.lyـ
mailto:naima.kafu@uoz.edu.lyـ


38Naima Altaher Kafu

 

1543 

Successive Over-Relaxation (SOR) to accelerate convergence [6][7], adaptive step-sizing 

based on residual monitoring [8][9], and preconditioning techniques to improve the numerical 

properties of the linear systems [10][11]. The impact of reordering equations to optimize 

convergence rates is also investigated [12][13]. The proposed hybrid method aims to 

outperform traditional Jacobi and Gauss-Seidel methods, offering a robust solution for 

practitioners in applied mathematics and engineering [3][5]. 

Literature Review 

   Because of its simplicity and ease of implementation, the Jacobi method has been studied 

and investigated in depth since its creation. Early works emphasized its foundational principles 

by demonstrating its ability to work under most conditions, especially on diagonally dominant 

matrices. However, its limitations were soon discovered by researchers, one of the major ones 

concerning the speed of convergence. For example, Young analyzed convergence properties 

of the Jacobi method and noticed that it would converge under very particular conditions 

depending on the properties of a matrix [1]. 

Considering the Jacobi method converges slowly, many improvements have been considered. 

A significant enhancement is that of SOR, or Successive Over-Relaxation, which improves 

convergence rates by introducing a relaxation factor. This was studied in-depth by W. H. Press 

et al., where it was shown that for an ideal choice of the relaxation factor, it is possible to 

achieve a substantial reduction in the number of iterations of the method, at a prescribed 

accuracy [2]. 

Another strand of research efforts involves hybridization of iteration methods. The 

hybridization of the Jacobi method with the Gauss-Seidel method has attracted much interest 

because of its potential to exploit the respective strengths of both methods. In a recent work, 

Xu and Chen proposed a hybrid iterative method that uses Jacobi and Gauss-Seidel updates in 

an alternating manner. They have achieved faster convergence rates for certain classes of 

problems [3]. This hybrid method retains the simplicity of the Jacobi method and makes use of 

the faster convergence provided by Gauss-Seidel. 

Approaches that have also been researched involve the use of preconditioning techniques to 

further improve the behavior of iterative methods. Preconditioning, in effect, transforms the 

original system into one that is more favorable; if successful, it reduces the condition number 

and thus improves convergence. Work by Saad has involved incomplete LU factorization as a 

means of preconditioning iterative methods and showed significant improvements in finding 

the solution for big sparse systems [4]. 

Another point of interest in research has been the reordering of equations in a system for better 

convergence. It has been observed that permutation in the equations can lead to enhanced 

diagonal dominance, thus improving the convergence properties of iterative methods. The work 

by Meijerink and Van der Vorst showed that suitable reordering may have a great effect on the 

performance of iterative solvers [5]. 

Conclusion The Jacobi method is an elementary iterative approach. Lack of efficiency in its 

convergence has prompted improvement efforts in great many ways: by means of relaxation 

techniques, hybrid methods, preconditioning, and equation reordering. This literature review 
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has highlighted the continuing work on enhancing the efficiency and range of application of 

the Jacobi method for solving systems of linear equations. 

1. Strategies for Enhancing the Jacobi Method Using Gauss 

Iterative Techniques. 
The Jacobi method is an efficient iterative technique for solving linear equations. Although 

simple and easy to apply, in many instances, the method could be very slow in convergence, 

especially in large-scale linear equations. This paper investigates several approaches in 

improving the Jacobi method by combining the Gauss iterative methods in an attempt to 

accelerate the convergence. The Jacobi method can be represented mathematically in 𝑛 

unknowns as follows: 

𝐴𝑥 = 𝑏 

𝐴 is an 𝑛 × 𝑛 square matrix, 𝑥 is the vector of unknowns with 𝑛 elements, and 𝑏 is the right-

hand side vector with 𝑛 elements. 

1.1 Hybrid Jacobi-Gauss-Seidel Methods 
The hybrid approach combines feature of both the Jacobi and Gauss-Seidel methods to achieve 

faster convergence. In the traditional Jacobi method, all variable values are updated at the end 

of each iteration using values computed in the previous iteration. Mathematically, for a system 

of equations with 𝑛 unknowns, the update for each unknown 𝑥𝑖 can be expressed as: 

𝒙𝒊
(𝒌+𝟏)

=
𝟏

𝒂𝒊𝒊
(𝒃𝒊 − ∑ 𝒂𝒊𝒋

𝒋≠𝒊       

𝒙𝒋
(𝒌)

)          𝐟𝐨𝐫   𝒊 = 𝟏, 𝟐, … , 𝒏  

    

where 𝑘 indicates the iteration number. Conversely, the Gauss-Seidel method utilizes the 

most recent updates immediately. This can be formulated as: 

𝒙𝒊
(𝒌+𝟏)

=
𝟏

𝒂𝒊𝒊
(𝒃𝒊 − ∑ 𝒂𝒊𝒋

𝒊−𝟏

𝒋=𝟏

𝒙𝒋
(𝒌+𝟏)

− ∑ 𝒂𝒊𝒋

𝒏

𝒋=𝒊+𝟏

𝒙𝒋
(𝒌)

)          𝐟𝐨𝐫   𝒊 = 𝟏, 𝟐, … , 𝒏  

With a combination of these techniques, some variables are able to be solved using the Gauss-

Seidel method, which relies on the latest information available, whereas others are able to be 

solved using the Jacobi method, which relies on older information available from the preceding 

iteration. 

The hybrid method encourages flexible iteration strategies where, depending on the nature of 

the linear system, one can adjust the method for optimal performance. This is quite helpful 

when dealing with systems that contain a large number of unknowns, as it can help cut down 

on the iterations needed for converging. 

In the hybrid method, the advantages of both Jacobi and Gauss-Seidel techniques are harnessed 

together to get the maximum results. This is done through the following methods: 
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This strategy includes: 

1.1.1 Partial Updates 

• Use the Gauss-Seidel method to update some variables and the Jacobi method to 

update the rest. 

Implementation: 

• Select a set of variables according to certain criteria such as convergence. 

• For example, if 𝑛 unknowns set up in blocks, the update process using the Gauss-Seidel 

method should be carried out on the first block and updates using the Jacobi method 

should be done on the second block at the same iteration. 

1.1.2 Periodic Switching 

• Cycle between the Jacobi and Gauss-Seidel methods for a number of iterations. 

Implementation: 

• An example is carrying out m iterations of the Jacobi iteration together with n 

iterations of the Gauss-Seidel iteration. 

• This can be implemented as: 

If k mod (m + n) < m, then update using Jacobi method; otherwise, update using Gauss-

Seidel method. 

1.2 Successive Over-Relaxation (SOR) 

• Improve convergence speed by modifying the updates using a relaxation factor 𝜔. 

        Implementation: 

• Update the variables using: 

𝒙𝒊
(𝒌+𝟏)

= (𝟏 − 𝝎)𝒙𝒊
(𝒌)

+
𝝎

𝒂𝒊𝒊
(𝒃𝒊 − ∑ 𝒂𝒊𝒋

𝒋≠𝒊       

𝒙𝒋
(𝒌)

)          

Explore various values of w(generally, the range is 1<w<2) to arrive at the convergence 

parameter suited to the linear equations. 

1.3 Precondition 

• Transform the existing system to improve its numerical properties, which would 

improve the convergence. 

• Implementation: 

• incomplete LU factorization or other preconditioning techniques to form the perturbed 

system: 

𝑀−1 𝐴𝑥 = 𝑀−1𝑏 

• Solve the preconditioned system using a hybrid method. 

1.4 Reordering of Equations 
 

The reordered form of the system of linear equations may improve the performance of 

iterative methods for large linear equation problems. The aim here is to improve diagonal 

dominance. 
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Rationale 

• Diagonal Dominance: A set of equations is said to be diagonally dominant if, for 

every equation, the largest in absolute value of the elements in the principal diagonal 

is greater than the sum of the absolute values of the remaining elements in the 

equation. If a system possesses diagonal dominance, then it will require fewer 

iterations in order to solve the system using the iterative method. 

• Stability: Correct ordering of equations can improve numerical stability when solving 

iteratively. There can be chances of divergence. 

• Implementation Steps 

           Step 1: Analyze the Coefficient Matrix 

              Given the system: 

               𝐴𝑥=𝑏, where 𝐴 is the coefficient matrix: 

[

𝑎11 𝑎12
⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮   ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] 

 

• Analyzing the matrix A to find the order of the rows that maximizes the diagonal 

dominance. 

 Step 2: Rearrange the Equations 

1. Sorting by 

• Calculate the absolute value of the diagonal elements |aii| for every row and 

measure it against the sum of the other elements’ absolute values within that row: 

|𝒂𝒊𝒊| > ∑|𝒂𝒊𝒋|

𝒋≠𝒊       

 

• Swap the rows according to this criterion to maximize the diagonal dominance. 

 

2. Use Heuristic or Algorithms: 

• Heuristically apply techniques like Gaussian Elimination or algorithms with the 

aim of maximizing the diagonal dominance via clever row permutations. 

• Strategies such as maximum element strategy may be employed, where the greatest 

available element in each column is placed on the diagonal position. 

Step 3: Developing a New System 

      Also, after reordering, the new system can be modeled as: 

𝐴̃𝑥̃ =  𝑏̃ 

     Where 𝐴̃ represents the reorganized matrix, 𝑥̃ is the vector of the new set of unknowns, 

and   

        𝑏̃ is the updated right-hand side vector. 
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Example  : 

1. Original System: 

                                                    𝟑𝒙 +  𝒚 + 𝟐𝒛 = 𝟓 

𝟐𝒙 + 𝟒𝒚 + 𝟑𝒛 = 𝟏𝟐 

                                                             𝟓𝒚 + 𝟐𝒛 = 𝟖 

 

2. Coefficient Matrix: 

𝑨 = [
𝟑 𝟏 𝟐
𝟐 𝟒 𝟑
𝟎 𝟓 𝟐

] 

3. Evaluate Diagonal Dominance: 

• Row 1: ∣3∣>∣1∣+∣2∣ (dominant)  

• Row 2: ∣4∣>∣2∣+∣3∣ (dominant)  

• Row 3: ∣5∣>∣2∣ (dominant) 

Because each row satisfies the condition for diagonal dominance, the set of equations 

can be solved by the Jacobi or the Gauss-Seidel methods. 

Impact on Convergence 

• Reordering usually results in fewer iterations being required to reach a 

specified level of accuracy. The reordered solution systems with improved 

diagonal dominance properties are likely to converge faster and with greater 

reliability than the unreordered systems. 

Equation rearrangement is a clever strategy for increasing the effectiveness and 

accuracy of iterative methods in solving linear systems. The improvement in diagonal 

dominance and stability achieved by this method is quite important for fast 

convergence rates and is, therefore, a crucial implementation step. 

1.5 Adaptive Step Size 
The adaptive step-size methods include changes in the increment size used in the 

variable update during the iteration. The strategy can be helpful for improving the rate 

of convergence. It can be applied during the solution of a linear system. 

Rationale 

• Convergence Control: With a variable step size, the control over the 

convergence procedure is more precise. This is especially the case when the 

approximate solution is close to the exact solution, where smaller steps can be 

used to avoid overshooting the target. 

• Improvement in Efficiency: Step size can be increased in regions where the 

solution varies quite slowly from the convergence behavior of previous 

iterations or decreased when adjustments tend to create instability. 

Steps to Implementation 

Step 1: Check the Residuals 

• Calculate the residual 𝑟(𝑘) at each step, which is the difference between the left-hand 

side and right-hand side of the system: 
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𝑟(𝑘) = 𝑏 − 𝐴𝑥(𝑘) 
 

• The norm of the residual can be used to judge how close a current solution is to a 

solution to an equation: 

‖𝑟(𝑘)‖ = ‖𝑏 − 𝐴𝑥(𝑘)‖ 

2. Determination of Step Size Adjustment 
 

1. Assess Convergence: 

• "If the norm of the residual is decreasing rapidly, it may be appropriate to 

choose a larger step size." 

• “If the norm is not reducing satisfactorily or erratically, decrease the step size 

to improve stability.” 

2. Specify Update: 

 Define a parameter α α to control the growth or shrinkage of the step size. The update 

rule could be: 

 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼. ∆𝑥(𝑘) 

Where ∆𝑥(𝑘) is the basic update value from the Jacobi or Gauss-Seidel method 

3. Adjustment 

• Define the rules for updating α: 

• Increase Step Size: If ∥r(k)∥< ϵ (where ϵ is a small tolerance value), increase α 

(e.g., multiply by a factor β>1). 

• decrease the Step Size: If ||r(k)|| > ϵ threshold, then decrease α by multiplying 

it by a factor β<1). 

Example 

1.  Initial Setup: 

• Initially, an initial guess x0 and an initial step size α =1 will be considered. 

 

2. Iteration Process: 

• Evaluate each component of the update for each iteration of the following 

process: 

• Calculate the basic update expression ∆𝑥(𝑘) using the Jacobi or Update the 

solution as: 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼. ∆𝑥(𝑘) 
 

3.  Adapt Step Size: 

• Check the residual after every iteration and allow α to converge as described in 

Step 2. 

Benefits 

• Improved Stability: The oscillation possibility can be reduced by using the rate of 

convergence to modify the value of the constant step size. 

• Faster Convergence: Proper step size adjustment can lead to fewer iterations, since the 

algorithm enables faster movements to the solution if needed. 
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• Flexibility: It caters to different systems with different properties, thereby providing a 

customized convergence approach. 

Adding adaptive step size techniques into some iterative algorithms, such as Jacobi and 

Gauss-Seidel algorithms, may yield dramatic enhancements in convergence speed and 

stability. Based on continuous monitoring of residuals and dynamic adjustment of step size, 

people could optimize solving processes for complex linear equations. 

6. Acceleration Techniques 
The acceleration techniques are techniques employed to increase the rate of convergence of 

iterative formulas. This is carried out by altering the iterative formula so as to reduce the 

number of iterations necessary for obtaining a satisfactory solution. 

Key Acceleration Techniques 

1. Aitken’s Delta-Squared Process 

We will examine the steps involved in the 

• Objective: To accelerate the convergence of a sequence of approximations. 

• How It Works: Aitken’s method enhances the series by eliminating inaccuracies 

in each iteration. 

• Formula 

 

𝑥̂(𝑘) = 𝑥(𝑘) +
(𝑥(𝑘) − 𝑥(𝑘−1))2

𝑥(𝑘) − 𝑥(𝑘−1) − 𝑥(𝑘−2)
 

• Application: After each iterative step, apply Aitken’s process if the three most 

recent approximations are available, producing a refined estimate. 

 

 

2.  Richardson Extrapolation 

• Objective: To enhance accuracy via linear combinations of solutions obtained 

from iterations with different parameters. 

• How It Works: Cells from iterative processes with different relaxation factors 

𝜔1 and 𝜔2 are combined to get a more accurate result. 

• Formula: 

𝑥𝑓𝑖𝑛𝑎𝑙 =
𝜔1𝑥(𝑘) − 𝜔2𝑥(𝑘−1)

𝜔1 − 𝜔2
 

• Application: Usage of conventional and adjusted relaxation factors in the 

process of iteration, calculation of the linear combination to get a better estimate 

3. Deflation Techniques 

• Objective: Removes the impact of slowly converging components on 

solution iterations. 

• How It Works: The specific eigenvalues or modes causing slow 

convergence can be pinpointed and tamed, allowing the other modes to 

converge faster. 

• Implementation: 
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• Spectral techniques to be used to identify modes to be removed, or 

“Modify the iterative algorithm to ignore these modes so that other 

components can converge faster. 

4.   Preconditioning 

• Objective: The objective of this step is to change the form of the 

equations into something more easily solvable. 

• How It Works: Preconditioners are used to help improve the condition 

number of the coefficient matrix which speeds up convergence. 

Types: 

• Incomplete LU Factorization: Approximate the matrix A as LU, 

where L is a lower triangular matrix and U is an upper triangular 

matrix. 

• Symmetric Successive Over-Relaxation (SSOR): It is a 

combination       of relaxation methods and a preconditioning 

technique used for 

                  System Transformation: 

𝑴−𝟏𝑨𝒙 = 𝑴−𝟏𝒃 

• Application: Jacobi or Gauss-Seidel iterative methods can then be applied to the new 

system of equations. There will be faster rates of 

5. Hybrid Methods 

• Objective: To merge the advantages of a variety of iterative methods to ensure better 

performance. 

• How It Works: Through a cycling between techniques (such as Jacobi and Gauss-

Seidel) or incorporating other techniques (such as Successive Over-Relaxation), the 

overall efficiency can be improved. 

Advantages of Acceleration Techniques 

• Quicker Convergence: These methods result in faster solutions because the process 

converges quicker compared to traditional methods. 

• Stability: They assist in dampening oscillations and facilitating convergence towards a 

solution. 

• Flexibility: Can be adapted to different systems and convergence tendencies, thus 

offering an adapted solution according to the needs. 

Methods such as the Aitken Delta-Squared process, Richardson extrapolation, deflation 

methods, and hybrid techniques have improved the efficiency of the Jacobi and Gauss-Seidel 

methods. With the use of these methods, an individual would be able to solve linear systems in 

a much more efficient way. 

Example: 

• Start by employing Jacobi iterative techniques that can run in parallel, then switch to 

Gauss-Seidel iterative techniques which guarantee faster convergence. 

Hybrid Method-Example: Jacobi Method Followed by Gauss-Seidel Method 
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Problem Setup 

Consider the following system of linear equations: 

                                             𝟒𝒙 + 𝒚 + 𝒛 = 𝟕          (𝟏) 

𝒙 + 𝟑𝒚 + 𝟐𝒛 = 𝟏𝟑      (𝟐) 

𝟐𝒙 − 𝟒𝒚 + 𝟓𝒛 = −𝟑   (𝟑) 
 

Step 1: Initial Guess 

We will start with an initial guess for the solution vector: 

𝑥(0) = [0 , 0 ,0] 
 

Step 2: Jacobi Method Iterations 

The Jacobi update formulas for the given system are derived as follows: 

1. From equation (1): 

𝑥(𝑘+1) =
1

4
(7 − 𝑦(𝑘) − 𝑧(𝑘)) 

2.  From equation (2): 

   𝑦(𝑘+1) =
1

3
(13 − 𝑥(𝑘) − 2𝑧(𝑘)) 

3. From equation (3): 

  𝑧(𝑘+1) =
1

5
(−3 − 2𝑥(𝑘) + 4𝑦(𝑘)) 

 

Performing Jacobi Iterations 

Let’s perform 3 iterations using the Jacobi method. 

Iteration 1: 
 

• K = 0 ( initial guess) 

      𝑥(1) =
1

4
(7 − 0 − 0) =  

7

4
= 1.75 

       𝑦(1) =
1

3
(13 − 0 − 0) =

13

3
≈ 4.33 

       𝑧(1) =
1

5
(−3 − 20 + 40) = −

3

5
= −0.6 

 

Results after Iteration 1: 
 

𝑥(1) ≈ 1.75 ,        𝑦(1) ≈ 4.33 , 𝑧(1) ≈ −0.6 
 

Iteration 2: 
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• K = 1 

        𝑥(2) =
1

4
(7 − 4.33 − (−0.6)) =

1

4
(7 − 4.33 + 0.6) =  

3.27

4
≈ 0.8175 

  𝑦(2) =
1

3
(13 − 1.75 − 2(−0.6)) =

1

3
(13 − 1.75 + 1.2) =

12.45

3
≈ 4.15 

       𝑧(2) =
1

5
(−3 − 21.75 + 44.33) =

1

5
(−3 − 3.5 + 17.32) =

10.82

5
= 2.164 

Results after Iteration 2: 

𝑥(2) ≈ 0.8175 ,        𝑦(2) ≈ 4.15 , 𝑧(2) ≈ 2.164 
 
 

Iteration 3: 
 

• K = 2 

     𝑥(3) =
1

4
(7 − 4.15 − 2.164) =

1

4
(7 − 6.314) =  

0.686

4
≈ 0.1715 

     𝑦(3) =
1

3
(13 − 0.8175 − 2(2.164)) =

1

3
(13 − 0.8175 − 4.328)

=
7.8545

3
 

              ≈ 2.6182 

 𝑧(3) =
1

5
(−3 − 20.8175 + 44.15) =

1

5
(−3 − 1.635 + 16.6) =

11.965

5
 

               ≈ 2.393 
 

Results after Iteration 3: 
 

𝑥(3) ≈ 0.1715 ,        𝑦(3) ≈ 2.6182 , 𝑧(3) ≈ 2.393 
 

Step 3: Transition to Gauss-Seidel Method 

Now that we have some updated values from the Jacobi method, we will switch to the 

Gauss-Seidel method to speed up convergence. 
 

Gauss-Seidel Update Formulas 

The Gauss-Seidel update equations based on our system are: 
 

1. From equation (1): 

𝑥(𝑘+1) =
1

4
(7 − 𝑦(𝑘) − 𝑧(𝑘)) 

2. From equation (2): 
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                           𝑦(𝑘+1) =
1

3
(13 − 𝑥(𝑘+1) − 2𝑧(𝑘)) 

 

3. From equation (3): 

                𝑧(𝑘+1) =
1

5
(−3 − 2𝑥(𝑘+1) + 4𝑦(𝑘+1)) 

 

Performing Gauss-Seidel Iterations 

Now, we will perform 3 iterations with the updated values from the last Jacobi 

iteration. 

 

Iteration 1 (Gauss-Seidel): 
 

• K = 0 ( 𝑥(0) ,  𝑦(0) , 𝑧(0)) ≈ (0.1715 , 2.6182 , 2.393) 

𝑥(1) =
1

4
(7 − 2.6182 − 2.393) =

1

4
(7 − 5.0112) =  

1.9888

4
≈ 0.4972 

  𝑦(1) =
1

3
(13 − 0.4972 − 22.393) =

1

3
(13 − 0.4972 − 4.786)   

           =
7.7168

3
  ≈ 2.5723 

  𝑧(1) =
1

5
(−3 − 20.4972 + 42.5723)

=
1

5
(−3 − 0.9944 + 10.2892) 

          =
6.2948

5
≈ 1.2590 

 

Results after Gauss-Seidel Iteration 1: 
 

𝑥(1) ≈ 0.4972,        𝑦(1) ≈ 2.5723 , 𝑧(1) ≈ 1.2590 

 
Iteration 2 (Gauss-Seidel) 
 

• K = 1 

x(2) =
1

4
(7 − 2.5723 − 1.2590) =

1

4
(7 − 3.8313) =  

3.1687

4
≈ 0.7922 

       𝑦(2) =
1

3
(13 − 0.7922 − 2 1.2590) =

1

3
(13 − 0.7922 − 2.518)

=
9.6898

3
 

              ≈ 3.2299 
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          𝑧(2) =
1

5
(−3 − 2 0.7922 + 4 3.2299)

=
1

5
(−3 − 1.5844 + 12.9196)        

                 =
8.3352

5
≈ 1.6670 

 

Results after Gauss-Seidel Iteration 2 

𝑥(2) ≈ 0.7922 ,        𝑦(2) ≈ 3.2299 , 𝑧(2) ≈ 1.6670 

Iteration 3 (Gauss-Seidel) 

• K =2 

𝑥(3) =
1

4
(7 − 3.2299 − 1.6670) =

1

4
(7 − 4.8969) =  

2.1031

4
≈ 0.5258 

𝑦(3) =
1

3
(13 − 05258 − 2 1.6670) =

1

3
(13 − 0.5258 − 3.334)

=
9.1402

3
 

       ≈ 3.0467 

𝑧(3) =
1

5
(−3 − 2 0.5258 + 4 3.0467) =

1

5
=

8.1352

5
≈ 1.6270 

 

Results after Gauss-Seidel Iteration 3 

𝑥(3) ≈ 0.5258 ,        𝑦(3) ≈ 3.0467 , 𝑧(3) ≈ 1.6270 

   This example demonstrates how to combine the Jacobi method for initial iterations—

allowing for easy parallel computation—followed by the Gauss-Seidel method for refined 

convergence. This hybrid approach leverages the strengths of both methods: the Jacobi 

method’s parallelism benefits with initial estimates, and the rapid convergence of the Gauss-

Seidel method afterward. 

In the above example, the Jacobi method is used to solve the initial iterations, where the Jacobi 

method is amenable to parallel processing, and the Gauss-Seidel method is used to get a better 

rate of convergence. This is beneficial since the Jacobi method is effective and useful during 

parallel processing, and the Gauss-Seidel method is highly convergent. 

Conclusion 
   In this paper, the performance and convergence properties of the Jacobi and the Gauss Seidel 

methods for the solution of the linear systems were considered. Analysis has shown that 

although the two methods were effective, they differed distinctly. 



38Naima Altaher Kafu

 

1555 

The Gauss-Seidel algorithm was more efficient, as it reached stable points in fewer iterations 

compared to the Jacobi method. This implies that for fast convergence problems, the most 

preferred algorithm is the Gauss-Seidel algorithm. The Jacobi method remains valid, mainly 

for parallel computation problems where it acts independently when calculating values. 

In conclusion, our results further emphasize the significance of choosing a fitting algorithm 

according to the requirements of a given problem. Future research could include exploration of 

hybrid solutions or improvements of such algorithms to optimize their performance for 

different tasks. 

In the same research, we also examined different ways to improve the Jacobi algorithm used 

to solve the linear system by combining different Gauss iterative methods. We used an iterative 

method to implement and evaluate different techniques among others, such as the Hybrid 

Jacobi G-S algorithm, Successive Over Relaxation, reordering, and the use of the 

preconditioning method. 

The analysis showed that the use of the given improvement techniques has resulted in enhanced 

convergence and accuracy than the conventional Jacobi method. In this context, the comparison 

between the Jacobi, Hybrid, and SOR methods has found that the number of iterations for 

convergence and the final error were reduced. Additionally, reordering the equations has 

enhanced the convergence property, while the use of the preconditioning technique has been 

the most effective method for faster convergence. 

The results obtained stress the need to make modifications and improvements to iterative 

methods in computational mathematics. The proposed methods achieve optimization of the 

Jacobi iterative approach, making it more efficient. Additionally, these methods have potential 

applications in solving large linear systems. Other areas where optimizations may be developed 

based on these strategies include numerical problem solving. 
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