تحليل رياضي لتوزيع بيتا وتطبيقاته في معالجة الإشارات الكهربائيةالعشوائية

Authors

  • . كلثوم محمد اابوراص1 *، خديجة ابوبكر خشيبة 2، ريم غيث أبوزويدة2 1 المواد العامة، كلية التقنية الهندسية/جنزور ، طرابلس، اليبيا 2 المواد العامة، المعهد العالي للتقنيات الهندسية / طرابلس ، طرابلس ليبيا , Author

DOI:

https://doi.org/10.65405/.v10i37.594

Keywords:

Distribution.Signal.Noise.FunctionDensity.Model[ng; Processing;).

Abstract

function and the Beta distribution, both of which play a crucial r ed ole in applimathematics and statistical modeling. The Beta distribution is directly derived from the Beta function and is widely used in statistical applications that require modeling probabilities within a bounded interval. In electrical engineering, probability distributions are essential tools for analyzing random systems and signal processing, particularly in addressing challenges related to noise, signal quality, and statistical estimation. The study focuses on the mathematical relationship between the Beta function and the Beta distribution, highlighting their relevance in analyzing stochastic electrical signals. By leveraging these functions, engineers can model uncertainty, optimize signal performance, and enhance the reliability of communication systems. The research also presents practical applications, including the design of probabilistic filters, estimation of transmission error probabilities, and performance enhancement in communication networks Findings indicate that the Beta distribution offers high flexibility in modeling signal behavior under varying noise conditions, making it a valuable tool for improving statistical accuracy in signal analysis. Its adaptability allows for more precise error

estimation and better filter design, which are critical in modern communication systems where data integrity and transmission efficiency are paramount Moreover, the integration of Beta-based models into signal processing frameworks demonstrates a promising approach to bridging theoretical mathematics with real- world engineering challenges. This synergy not only improves system performance but also opens new avenues for developing intelligent, adaptive technologies capable of responding to dynamic environments. In conclusion, the Beta function and distribution serve as powerful analytical tools in electrical engineering, offering robust solutions for signal modeling, error prediction, and system optimization in stochastic settings

Downloads

Download data is not yet available.

References

Haykin, S . (2001) . Communication Systems. Wiley. .1

. Abramowitz, M. & Stegun, I. A. (1972) 2.

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical

Tables Dover Publications

. . Gradshteyn, I. S. & Ryzhik, I. M. (2014).3

Table of Integrals, Series, and Products Academic Press

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995 . . Continuous Univariate Distributions, Volume 2

Wiley-Interscience

. . Feller, W. (1968) . .5

An Introduction to Probability Theory and Its Applications, Vol. 1

Wiley

. . Patel, J. K., & Read, C. B. (1996(. . 6

Handbook of the Normal Distribution and Related Distributions

CRC Press

Papoulis , A ., & Pillai, S . U . (2002). .7

Probabiliy , Random Variables and Stochastic processes. McGraw.Hill.

مراجع باللغة العربية

8- محمد زغلول، (2002). الاحتمالات والتوزيعات الاحتمالية. دار المريخ للنشر

9- أحمد عبداله ، (2020) . التحليل الاحصائي للإشارات الكهربائية . دار النشر الجامعي .

10-عبد الله،مجمد (2010). الأسس الرياضية في الإحصاء وتطبيقاتها. مكتبة الأنجلو المصرية

11- - محمد س .( 2021) . المرشحات الاحتمالية وتطبيقاتها في الاتصالات الرقمية. المجلة العربية للهندسة الكهربائية.

12-الشناوي ، عبد الفتاح (2008) الاحتمالات والاحصاء وتطبيقاتهما في الهندسة الكهربائية ، مكتبة الانجلو المصرية. – الزعبي ، محمد حسن ، (2012) مدخل الي نظرية الاشارات والانظمة ، دار وائل للنشر الاردن.

13– محمد، خالد عبد العزيز ، (2010) ، معالجة الاشارات الرقمية ، دار الفكر العربي ، القاهرة .

Downloads

Published

2025-11-25

How to Cite

تحليل رياضي لتوزيع بيتا وتطبيقاته في معالجة الإشارات الكهربائيةالعشوائية. (2025). Comprehensive Journal of Science, 10(37), 2295-2304. https://doi.org/10.65405/.v10i37.594