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Abstract:

This study examines the possibilities of simple polynomial solutions for specific classes of nonlinear
differential equations. It relies on the traditional algebraic approach to solving nonlinear polynomial
systems, where projective methods and summations play an important role. The study focuses on
first- and second-order nonlinear ordinary differential equations, using the Ansatz method and
symbolic computing tools to generate and validate polynomial solutions of order four or less. The
main objectives include discovering equations with polynomial solutions, evaluating the
effectiveness of analytical methods such as equilibrium analysis and Lie symmetry, and comparing
the validity of exact solutions with approximate and numerical alternatives. The research adopts an
analytical-theoretical approach, relying on algebraic logic, symbolic software (Mathematica/Maple),
and a carefully selected sample of well-known nonlinear models, including the Riccati and Duffing
equations. The results demonstrate that, under certain structural and boundary conditions, nonlinear
equations can allow for simple polynomial solutions that accurately describe the behavior of the
system. The results also demonstrate that the form and degree of nonlinearity of the equation
significantly influence the feasibility of developing polynomial solutions. The study emphasizes the
importance of symbolic computing in verifying these solutions and suggests further research on
higher-order systems with variable coefficients, as well as the integration of polynomial solutions
into applicable physical and engineering environments.
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Introduction

Finding the solution to a system of nonlinear polynomial equations in n unknowns over a specified
field, known as the algebraic closure of the efficient field, is a classic and essential problem in
computational algebra. For algebraic reasons (see to footnote 1 in van der Waerden (1953, §80), one
analyzes projective problems, where the polynomials are homogenous and the solutions are sought
in an n-dimensional projective space. It is also worth noting that the solutions to an affine system are
specializations of the solution rays of its homogenized projective version. According to Cayley and
Bezout from the previous century, the solvability of such a projective system is defined by the
vanishing of a certain invariant, its resultant. This invariant generalizes the Sylvester resultant of two
polynomials in a single variable (Knuth 1981) as well as the coefficient matrix determinant on a
homogeneous linear system. In 1916, Macaulay (1916) demonstrated that the outcome may be written
as a quotient of two determinants whose corresponding matrices include coefficients from the input
polynomials. These matrices have exponential dimension in the number of variables, but since there
is a simple reduction to an NP-complete problem (Agnarsson et al 1984), there is little chance for a
polynomial-time solution in the number of variables. Finally, if a projective system with n-1 equations
and n unknowns has a limited number of solutions, they may be identified by calculating the system's
resultant and adding a generic linear form. That resultant, known as the u-resultant, is a polynomial
in the generic coefficient variables of the added form, and it factors into lin-ear factors whose scalar
coefficients are identical to the components in the respective solution rays.?

Study problem
Nonlinear differential equations are essential for modeling a broad variety of natural events in
physics, biology, chemistry, engineering, and economics. Despite its significance, finding accurate
analytical solutions to nonlinear differential equations is still one of the most challenging problems
in practical mathematics. Most nonlinear equations cannot be solved using simple methods and often
need numerical approaches or approximate analytical techniques such as perturbation, variational
methods, or specific function transformations.
However, there is a less-explored path in the analytical treatment of nonlinear differential equations:
the ability to derive accurate solutions in the form of simple polynomials. When polynomial solutions
exist, they are not only beautiful and concise, but they can provide important information about the
structure and behavior of nonlinear systems. Furthermore, such solutions may serve as benchmarks
for validating numerical techniques or understanding stability and qualitative behavior in larger
solution areas.
Despite their potential importance, polynomial solutions are seldom investigated systematically, and
there are no universal criteria or procedures for identifying the sorts of nonlinear differential equations
that allow such solutions. Furthermore, there is inadequate comprehension of the limits on beginning
or boundary conditions, parameter values, and the nonlinear factors that allow for polynomial
behavior. As a result, the primary goal of this research is to determine whether specific classes of
nonlinear differential equations allow exact solutions in the form of simple polynomials, to identify
the mathematical and structural conditions under which these solutions are valid, and to develop
systematic methods for deriving and verifying such solutions. The research also tries to examine the
consequences of these findings. Polynomial solutions: stability, uniqueness, and usefulness in
physical and engineering models .
Study objectives

1. Determine which kinds of nonlinear differential equations are likely to have simple solutions.

2. polynomial solutions.

3. Emerge as viable solutions.

! Canny, J. F., Kaltofen, E., & Yagati, L. (1989, July). Solving systems of nonlinear polynomial equations faster. In
Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation (pp. 121-
128).
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Ansatz, balance, or Lie symmetry analysis.
Polynomial solutions. To check and confirm the given answers, use direct substitution and
mathematical reasoning.
To compare the performance and correctness of polynomial solutions that are approximate
or numerical.
Methods typically employed
Physical, engineering, or biological systems.

Study questions
What sorts of nonlinear differential equations may be solved using basic polynomials?
What structural or formal features of the equations enable the existence of polynomial
solutions?
How do beginning and boundary conditions affect the existence and validity of polynomial
solutions?
What are the best mathematical strategies for finding polynomial solutions to nonlinear
equations?
How can the accuracy and validity of polynomial solutions be verified? Can the suggested
approach apply to other forms of nonlinear differential equations?
How reliable do polynomial solutions compare to numerical or approximation methods?
What is the practical benefit of employing simple polynomial solutions in physical and
engineering modeling?
Are there any restrictions or constraints when employing polynomial-based approaches to
solve nonlinear problems? Differential Equations?

Importance of the study

The study reveals that nonlinear differential equations are challenging mathematical models used in
fields like physics, engineering, and biology. Finding precise analytical solutions is often difficult or
impossible, relying on numerical approaches that may not accurately represent the system's behavior.
Identifying simple polynomial solutions is crucial for simplifying complex models and gaining a
better understanding of their features. Polynomial solutions can be applied to a wide range of
nonlinear equations, providing analytical tools for developing real-world applications. They are also
simple in structure and can be used as reference solutions for evaluating and benchmarking numerical
techniques. The study fills a gap in the literature by focusing on simple polynomial solutions to
nonlinear differential equations, which are still underexplored.

1.

2.

Study hypotheses
There exist nonlinear differential equations that possess exact solutions expressible as simple
polynomials.
The structural form of the equation such as the degree of terms and the nature of the nonlinear
components-directly influences the possibility of obtaining a polynomial solution.
Polynomial solutions are more likely to appear in lower-order differential equations with a
limited number of nonlinear terms.
The Ansatz method can be effectively and systematically used to derive simple polynomial
solutions.
Certain initial or boundary conditions enable the existence and validity of polynomial
solutions.
Simple polynomial solutions can accurately represent the general behavior of the equation in
specific cases, compared to numerical methods.
There is a relationship between the degree of the polynomial solution and the coefticients
within the nonlinear differential equation.
The methodology used to construct polynomial utions can be generalized to other nonlinear
equations with similar structural properties.
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Theoretical framework
Section One: Theoretical Framework of Nonlinear Differential
1.1 General Concepts of Differential Equations Definition of differential equations (ordinary
and partial
Applied Partial Differential Equations (Undergraduate Texts in Mathematics), by David J. Logan
Introduction to Applied Partial Differential Equations by John M. Davis. Many other fields include
advanced partial differential equations. We would also refer them to Schaum's outline series for
summaries, applications, solved problems, and practices. Solutions to partial differential equations
are often difficult, particularly when dealing with series solutions. It is advantageous to utilize strong
programs like as Maple or Mathematics for symbolic derivations and visualizations, and Matlab for
calculations and visualizations. We suggest readers to numerical solution approaches for PDEs.
First-order partial differential equations. One of the simplest first order partial differential equations
(PDE) is the ad-vection equation mu Ot o +a =0, oru_{t} + a*u_{x} =0 (2.1), where an is constant
at this time, t and an are independent variables, and u(x, t) is the dependent variable that has to be
solved. Most applications use t to represent time, z to represent space, and a to denote wave speed.
The PDE is described as one-dimensional, first order, linear, with constant coefficients, and
homogeneous. Although there are two independent variables, it is referred to as a one-dimensional
(1D) advection equation since there is only one spatial variable. This PDE, also known as a one-way
wave equation or transport equation, is classed as hyperbolic. The method of changing variables is as
follows.
There are numerous methods for finding general solutions to an advection partial differential
equation. One of them is the technique for modifying variables. The objective is to convert the partial
differential equation to an ordinary differential equation (ODE), which can then be solved using an
ODE solution technique. The easiest technique to change variables is the following, or (2.2) x = xi +
a*eta, where t equals eta. xi =x - at; eta =t.
The applications are based on the link between solutions to autonomous systems of ordinary
differential equations and operator semigroups created by linear first-order partial differential
operators. The following theorem expresses that connection. THEOREMA (1.1). Let E be an open
subset of R, with closure E and boundary dE. Assume F:ER fulfills (1.2). F(x)-F(y) Mix-y x,y € E
for a constant M, and (1.3) [F(x)| = 0 for x in d E. Consider X(1,x), which satisfies (1.4). d/dt (X(t,
x)) = F(X(t, x)). X(0, x) = x \in E(L.5). T(t)f(x) equals f(X(t,x)).
Cartan and Tresse's work on equivalency issues for equation classes with an existing group G has led
to the resurgence of Cartan method applications. They focused on determining equivalence
requirements for 'geometrically natural' classes of objects like Riemannian metrics or second order
ODEs. The Cartan method is derived from the fact that X(t+s,x)=X(t,X(s,x)) for all t. The
infinitesimal operator for T(t) is defined as when the limit occurs evenly in x. The chain rule implies
that Af = Aof for continuous differentiable functions with compact support. The Cartan method has
been applied to ordinary and partial differential equations, Lagrangian differential operators, and
control issues, with objects under consideration having a 'natural' group of transformations.*
Definitions and Elementary Applications
A differential equation consists of two components: the surface F(x, y, y') = 0 and a class of solutions.
A smooth solution is a continuously differentiable function (x) that fits the curve y = ¢(y), y' = 2(x)/x
into the hull (F(x, ¢(x), ¢(x)/x) = 0). The most crucial stage in integrating differential equations is
simplifying the hull by changing variables appropriately. This is achieved using the symmetry group
of the equation, which is the group of transformations of the (x, y)-plane. This chapter focuses on
identifying and applying one-parameter symmetry groups of ordinary differential equations.?

! Lisle, I. (1992). Equivalence transformations for classes of differential equations (Doctoral dissertation, University of
British Columbia).

2 Ibragimov, N. K. (1992). Group analysis of ordinary differential equations and the invariance principle in
mathematical physics (for the 150th anniversary of Sophus Lie). Russian Mathematical Surveys, 47(4), 89.
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Section Two: Nonlinear Differential Equations and Their Characteristics
2.1 Key differences between linear and nonlinear differ
Although many specific equations of this general class have appeared in the mathematical literature
over the last century or more, originating from geometric, physical, engineering, and economic
sources, only in the last decade and a half have they been intensively and extensively developed. As
a consequence, there are relatively few systematic descriptions accessible, forcing us to dedicate some
space in the following pages to fundamental conclusions required for the study of more advanced
material. To begin, consider the scalar linear equation with constant coefficients: u'(t)+au(t)+azu(t)=0.

u' *(t)+a {l}*u(t)+a {2}*u(t-omega)=0

t>w, u(t)=g(t), 0 <=t <=omega

Few ordinary differential equations have explicit solutions that can be expressed in finite terms. This
is not due to insufficient inventiveness but because the standard functions used to represent solutions
are insufficient for the wide range of differential equations in reality. Even if a solution is discovered,
the formula is often too intricate to clearly represent its main properties, especially for implicit
solutions and integrals or infinite series. The qualitative study of differential equations focuses on
determining significant aspects of solutions without solving them. The phase plane, a geometrical
device, is widely used to derive features like equilibrium, periodicity, limitless growth, and stability
from differential equations. The classical pendulum problem illustrates how the phase plane can
display key properties of solutions The basic pendulum (see Fig. 1.1) is made up of a particle P with
a mass of m hung from a fixed point O by a light string or rod of length a that swings vertically. If
there is no friction, the equation of motion is:
where x is the inclination of the string to the downward vertical, g is the gravitational constant, and
w? = g/a. We convert eqn (1.1) into an equation connecting & and x by writing di dr dx dx

This representaion of x di  didr aition (1.1) then becomes

¥ = —

1x =0,

By integrating this ~ d (1;2\ L2
dx

.3 2 -

X~ —w cosx = C,

where C is an arbitrary -c..coe.c. . coice ver vie cqemeaens -..p-€85€8 conservation of energy during
any particular motion, since if we multiply through eqn (1.3) by a constant ma2, we obtain

where E is another arbitrary constant. This equation has the form

E kinetic energy of P + potentic 5.9 _

and a particular value of E corn  3Mma”x~ —mgacosx = E,

Now write x in terms of x from equ (1.2):

o] o=t

This is a first-order differential equation for x(t). ] i=4/2(C + e cosx) 2, tions
(see McLachlan 1956), but we shall show that it i _ ution
by working directly from eqn (1.4) without actually solving it. Introduce a new variable, y, defined
by x' =y

Then eqn (1.4) becomes

Setup a fr-—~ ~©7~tnminn mmmm o oo nllddl- Loy plane, and plot the one-parameter family of
curves obt: . ) 1,2 if C. We obtain Fig. 1.2. This is called .
2.2Basic | ¥ =£y2(C + " cosx) /" stants.

In order to motivate the introduction of the Dahlquist constant, we shall begin with a brief discussion
of the four linear problems. Defining the spectral radius of A by [A] = max, it is well-known that
rho[A] <= 1 is necessary and e[A] < 1 is sufficient for ...
boundedness of the solutions to (LA1l), with strict

inequality [lambda {i}| < 1 for defective eigenvalues. Lal= e "

! Jordan, D., & Smith, P. (2007). Nonlinear ordinary differential equations: an introduction for scientists and engineers
(No. 10). Oxford University Press.
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Similarly for (LAD), we define the spectral abscissa of A by [A] = max, Re 2:. Then alpha[A] <=0
is necessary while alpha[A] < 0 is sufficient for stability. Once again, the exceptional case is the
defective eigenvalues which must have strictly negative real parts. The following relation between
[A] and [A] is easily proved, and is of some interest for the subsequent analysis:

The nonautonomous systems (LNA) and (LND) can no longer depend only on the spectral features
of the matrix function A. Taking the norms of both sides in (LNA), we get |[x n+ 1 ||[=||An x n [|[<=||A
n||[|[x n ||. If A is a contraction, then ||x]| is a non-increasing function of n, with [|[A_{n}|| <=1 for every
n. Clearly, this condition is adequate but not required. Using norms in a similar manner in (LND)
produces the "classical" differential inequality .

However, this approach always gives growing estimates and fails to establish any stability result
except for the trivial problem dot x = 0 The conceptually

correct way to estimate solutions to (LNI™ ' o © 7 7 7 Alquist and Lozinskij
in 1958. By means of the logarithmic no dllxll < || AN l1x]l-
one can derive the differential inequality dt
. ;i o .
Section a = ul A(e) ]l - Differential Equations

3.1 Simple Pc, ... .00 o

the solution of polynomial equations, which are systems of (usually) nonlinear algebraic equations.
This research lies at the core of various fields of mathematics and its applications. It has given
motivation for developments in several disciplines of mathematics, including algebra, geometry,
topology, and numerical analysis. In recent years, an explosion in algorithm and software
development has made it possible to solve many previously intractable problems, greatly expanding
the areas of applications to include robotics, machine vision, signal processing, structural molecular
biology, computer-aided design and geometric modeling, as well as certain areas of statistics,
optimization and game theory, and biological networks. Simultaneously, symbolic computing has
shown to be an excellent tool for experimentation and hypothesis in pure mathematics. As a result,
interest in effective algebraic geometry and computer algebra has spread well beyond its initial target
audience of pure and practical mathematicians and computer scientists, to include a wide range of
scientists and engineers. While algebraic geometry is at the heart of the field, it also draws on many
other branches of mathematics and theoretical computer science, including numerical techniques,
differential equations, and number theory, as well as discrete geometry, combinatorics, and
complexity theory.

The purpose of this book is to provide a comprehensive introduction to contemporary mathematical
features of computing with multivariate polynomials and solving algebraic equations. It is intended
for upper-level undergraduate and graduate students, as well as researchers in pure and applied
mathematics and engineering, who are interested in computational algebra and the linkages between
it and numercal mathematics. Most chapters assume a decent foundation in linear algebra, with some
requiring a fundamental understanding of Grobner bases at the [CLO97] level. Grobner bases have
become a fundamental tool in computer algebra, and the reader may study any other textbook, such
as [AL94, BW93, CLO98, GP02] or the first chapter in [CCS99]. We will quickly examine the
substance of each chapter as well as some of its requirements.

the foundations, contemporary advancements, and applications of Grébner and border bases, residues,
multivariate resultants, toric elimination theory, primary ideal decomposition, multivariate
polynomial factorisation, and homotopy continuation techniques. While some of the chapters are
basic, others cover cutting-edge symbolic approaches in polynomial problem solution, such as
effective and algorithmic methods in algebraic geometry and computational algebra, as well as
complexity concerns and applications. We also go over numerous numerical and symbolic-numeric

1 Soderlind, G. (1984). On nonlinear difference and differential equations. BIT Numerical Mathematics, 24(4), 667-680.
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approaches. This is not your typical textbook since each chapter is separate and mostly self-
contained. However, the many cross-references demonstrate that there are substantial connections
between the various chapters. While the reader benefits from having access to the book in a variety
of locations and witnessing the interaction of diverse perspectives on the same themes, it is important
to remember that, due to varying demands and traditions, certain notations will inevitably alter across
chapters. We've attempted to include this in the text wherever it appears. The single bibliography
and index emphasize the subject's cohesiveness.!

Since the inception of numerical analysis, methods for determining numerical solutions to non-linear
algebraic systems of equations have received a great deal of attention. It cannot be overstated how
widely these approaches are used to solve issues in physics, engineering, economics, and
mathematical optimization theory. = However, a large percentage of these issues involve
indeterminants or parameters that should only be assigned numerical values at the conclusion of the
computing processes. Sometimes numerical findings are insufficient to analyze the situation.
Furthermore, symbolic solutions obtained using elimination theory offer not only all solutions to a
particular system of equations, but also a categorization of solutions as solution surfaces or
parametrized solutions. Thus, the symbolic technique may yield an endless number of answers, but
numerical methods definitely cannot.

These high expectations were raised at the start of the symbolic mathematical manipulation research
around a decade ago. Unfortunately, strategies for computing solutions to systems of polynomial
equations by system sub-division and variable removal proved to be exceedingly inefficient. The
exponential development of some of these techniques prevents computing for even the most basic
nonlinear systems.

Only lately have various new and more efficient methods been devised, significantly improving the
possibility of solving a respectable, if limited, class of polynomial systems.This work describes a
specific implementation of the subdivision and elimination techniques that includes numerous
recently discovered algorithms into a subpackage of the symbolic and algebraic manipulation system
MACSYMA . The applications of this package show two key truths, which we shall highlight in this
study. On the one hand, the study of algorithms in symbolic manipulation over two decades is
beginning to pay dividends in terms of expanding analytical computing
Capabilities for a broader range of challenges. On the other hand, many symbolic algorithms remain
computationally inefficient, and the focus of computational algorithm research should move away
from asymptotic studies of idealized complexity theory and toward the development of practical
algorithms for more realistic issues.?

3.2: The Ansatz method for constructing polynomial solutionsThe Bethe Ansatz is a method for
diagonalizing a family of linear operators, known as Hamiltonians, used to calculate Hamiltonians
for various quantum integrable systems. It generates an eigenvector or Bethe vector from the solution
of a suitable system of equations. This study is prompted by the Bethe Ansatz technique applied to
the trigonometric Gaudin model, where the equation and Bethe vectors depend on an extra parameter,
a generic g-weight A. The Bethe Ansatz equation (3) can be expressed as a set of Wronskian equations
for a tuple of one-variable polynomials y = (y1,..., y), where r is the rank of g and the polynomials
are denoted by simple roots of g. For example, let g = s/2. The sl2-weights can be identified using
complicated numbers. In the trigonometric Gaudin model, the Bethe Ansatz equation is based on a
single polynomial y, satisfying the equation if its roots are simple and another polynomial y has the
same weight. ®

Y15 sy = o[-
i

! Dickenstein, A. (2005). Solving polynomial equations. Springer. Simple Polynomial Solutions

2Yun, D. Y. (1973). On algorithms for solving systems of polynomial equations. ACM SIGSAM Bulletin, (27), 19-25.
3 The Ansatz method for constructing polynomial solutions Mukhin, E., & Varchenko, A. (2006). Quasi-polynomials
and the Bethe ansatz. arXiv preprint math/0604048.
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The polynomial y is unique for a given y and a non-integer A, and its roots are simple for almost all
A. If the roots are simple, the polynomial y also satisfy the Bethe Ansatz equation with a new
parameter -A - 2. This procedure is called the simple reproduction procedure. For an arbitrary simple
Lie algebra g, there is a similar procedure associated with every simple root of g. An r-tuple of
polynomialsy = (y1,..., yr) is considered fertile with regard to A if the i-th simple reproduction process
is well-defined for i = 1,...,r. If y satisfies the Bethe Ansatz equation for A, it is fruitful in terms of A.
If the i-th simple reproduction technique yields a generic r-tuple y), it also forms a solution of the
Bethe Ansatz equation associated with the weight si A, where s: is the i-th elementary reflection in
the Weyl group of g. An r-tuple of polynomials is said to be super-fertile with regard to A if all
iterations of the basic reproduction processes are properly specified. The conjecture is proven for
simple Lie algebras of the type Ar, Br. A population is the collection of all r-tuples formed by iterating
basic reproduction methods on a given super-fertile r-tuple.t

Study Methodology
1. Research Methodology
The study adopts a theoretical analytical approach, focusing on the mathematical analysis of selected
types of nonlinear differential equations to derive exact solutions in the form of simple polynomials.
A deductive method is also used to test the validity of the obtained solutions and to explore the
possibility of generalizing them to other equations.
2. Study Tools
The following theoretical mathematical tools are utilized:
Algebraic techniques and advanced mathematical analysis.
The Ansatz Method for constructing polynomial solutions.
Symmetry analysis, when applicable.
Symbolic computation software such as Mathematica or Maple for verifying solutions.
3. Data Collection Sources
As the study is theoretical in nature, data are collected through:
Academic textbooks in applied mathematics and advanced differential equations.
Peer-reviewed research articles from reputable journals specializing in nonlinear analysis and
differential equations.
Academic databases such as ScienceDirect, Springer, and MathSciNet.
4. Study Sample
The study sample consists of a purposively selected set of nonlinear ordinary differential equations
(ODEs) with diverse structural forms, including:
First- and second-order nonlinear equations.
Equations containing quadratic or cubic nonlinearities.
Well-known models such as the Riccati equation, Duffing equation, and reaction-diffusion type
equations.
These equations were selected based on their theoretical potential to admit polynomial solutions.
5. Analytical Techniques
Symbolic analysis to derive and verify solutions by direct substitution into the original equations.
Examination of the behavior, accuracy, and generality of the obtained polynomial solutions.
Comparison of polynomial solutions with available numerical or approximate solutions.
Investigation of the relationship between the structure of the equation and the nature of the
resulting solution.
6. Scope and Limitations of the Study
The study is limited to ordinary differential equations (ODEs) and does not include partial
differential equations (PDEs).

! The Ansatz method for constructing polynomial solutions Mukhin, E., & Varchenko, A. (2006). Quasi-polynomials
and the Bethe ansatz. arXiv preprint math/0604048.
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It excludes non-polynomial solutions or those requiring special functions or advanced
transformations.

The study is purely theoretical and does not include empirical physical or engineering applications.
The focus is restricted to polynomial solutions of degree four or less (Polynomial degree < 4).

Study results
1. The research discovered that some first- and second-order nonlinear differential equations may
have simple polynomial solutions under certain circumstances.
2. The equation's structure, namely the shape and coefficients of nonlinear variables, has a direct
impact on the feasibility of finding polynomial solutions.
3. The Ansatz approach produced accurate polynomial solutions to chosen nonlinear equations.
4. The findings showed that polynomial solutions may give a simpler analytical representation that
captures the equation's overall behavior, particularly in specific circumstances or within narrow value
ranges.
5. It was shown that beginning and boundary conditions play an important role in influencing the
validity and shape of polynomial solutions.
6. A collection of nonlinear differential equations with polynomial solutions spanning from first to
fourth degree has been effectively discovered.

Study Recommendations:

1. Tt is proposed that research be expanded to include larger classes of nonlinear differential
equations in order to study the potential of finding polynomial solutions.

2. The development of algorithmic tools based on the Ansatz technique is encouraged in order
to automate polynomial solution creation.

3. Polynomial solutions should be used in numerical techniques, either as initial approximations
or for validation.

4. Researchers should investigate the link between equation features (such as symmetry, order,
and degree) and the ensuing kind of polynomial solution.

5. Academic institutions are urged to include the concept of simple polynomial solutions into
differential equations and system modeling programs.

6. Symbolic computing software, such as Mathematica and Maple, should be pushed as
instructional and research tools for researching nonlinear differential behaviour.
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