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Abstract: 

This study examines the possibilities of simple polynomial solutions for specific classes of nonlinear 

differential equations. It relies on the traditional algebraic approach to solving nonlinear polynomial 

systems, where projective methods and summations play an important role. The study focuses on 

first- and second-order nonlinear ordinary differential equations, using the Ansatz method and 

symbolic computing tools to generate and validate polynomial solutions of order four or less. The 

main objectives include discovering equations with polynomial solutions, evaluating the 

effectiveness of analytical methods such as equilibrium analysis and Lie symmetry, and comparing 

the validity of exact solutions with approximate and numerical alternatives. The research adopts an 

analytical-theoretical approach, relying on algebraic logic, symbolic software (Mathematica/Maple), 

and a carefully selected sample of well-known nonlinear models, including the Riccati and Duffing 

equations. The results demonstrate that, under certain structural and boundary conditions, nonlinear 

equations can allow for simple polynomial solutions that accurately describe the behavior of the 

system. The results also demonstrate that the form and degree of nonlinearity of the equation 

significantly influence the feasibility of developing polynomial solutions. The study emphasizes the 

importance of symbolic computing in verifying these solutions and suggests further research on 

higher-order systems with variable coefficients, as well as the integration of polynomial solutions 

into applicable physical and engineering environments. 

Keywords: Nonlinear differential equations, polynomial solutions, symbolic computing. 

 ملخص: ال
الدراسة إلى    التفاضلية غير الخطية. وتستند  الدراسة إمكانيات حلول متعددة الحدود البسيطة لفئات معينة من المعادلات  تتناول 

تركز الدراسة المنهج الجبري التقليدي لحل أنظمة متعددة الحدود غير الخطية، حيث تلعب الطرق الإسقاطية والمحصلات دورًا هامًا و 
على المعادلات التفاضلية غير الخطية العادية من الرتبتين الأولى والثانية، مستخدمة منهج أنساتز وأدوات الحوسبة الرمزية لتوليد 
حلول متعددة الحدود من الدرجة الرابعة أو أقل والتحقق من صحتها وتشمل الأهداف الرئيسية اكتشاف معادلات ذات حلول متعددة 

التقريبية والعددية. الحدود الدقيقة بالبدائل  التوازن وتناظر لي، ومقارنة صحة الحلول  التحليلية مثل تحليل  ، وتقييم فعالية المناهج 
، وعينة  (Mathematica/Maple) ويعتمد البحث على منهج نظري تحليلي، بالاعتماد على المنطق الجبري، والبرمجيات الرمزية

ر الخطية المعروفة، بما في ذلك معادلات ريكاتي ودافينغ. تُظهر النتائج أنه في ظل ظروف هيكلية  مختارة بعناية من النماذج غي
وحدودية معينة، قد تسمح المعادلات غير الخطية بحلول متعددة الحدود بسيطة تصف سلوك النظام بدقة كما تُظهر النتائج أن الشكل 

جدوى تطوير حلول متعددة الحدود، وتشدد الدراسة على أهمية الحوسبة الرمزية غير الخطي للمعادلة ودرجتها يؤثران بشكل كبير على  
في التحقق من هذه الحلول، ويقترح إجراء المزيد من الأبحاث في الأنظمة ذات الرتب الأعلى والمعاملات المتغيرة، بجانب  إلى دمج 

 .قحلول متعددة الحدود في البيئات الفيزيائية والهندسية القابلة للتطبي 
 الكلمات المفتاحية: المعادلات التفاضلية غير الخطية، حلول متعددة الحدود، الحوسبة الرمزية. 
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Introduction 
Finding the solution to a system of nonlinear polynomial equations in n unknowns over a specified 

field, known as the algebraic closure of the efficient field, is a classic and essential problem in 

computational algebra. For algebraic reasons (see to footnote 1 in van der Waerden (1953, §80), one 

analyzes projective problems, where the polynomials are homogenous and the solutions are sought 

in an n-dimensional projective space. It is also worth noting that the solutions to an affine system are 

specializations of the solution rays of its homogenized projective version. According to Cayley and 

Bezout from the previous century, the solvability of such a projective system is defined by the 

vanishing of a certain invariant, its resultant. This invariant generalizes the Sylvester resultant of two 

polynomials in a single variable (Knuth 1981) as well as the coefficient matrix determinant on a 

homogeneous linear system. In 1916, Macaulay (1916) demonstrated that the outcome may be written 

as a quotient of two determinants whose corresponding matrices include coefficients from the input 

polynomials. These matrices have exponential dimension in the number of variables, but since there 

is a simple reduction to an NP-complete problem (Agnarsson et al 1984), there is little chance for a 

polynomial-time solution in the number of variables. Finally, if a projective system with n-1 equations 

and n unknowns has a limited number of solutions, they may be identified by calculating the system's 

resultant and adding a generic linear form. That resultant, known as the u-resultant, is a polynomial 

in the generic coefficient variables of the added form, and it factors into lin-ear factors whose scalar 

coefficients are identical to the components in the respective solution rays.1 

Study problem 
Nonlinear differential equations are essential for modeling a broad variety of natural events in 

physics, biology, chemistry, engineering, and economics. Despite its significance, finding accurate 

analytical solutions to nonlinear differential equations is still one of the most challenging problems 

in practical mathematics. Most nonlinear equations cannot be solved using simple methods and often 

need numerical approaches or approximate analytical techniques such as perturbation, variational 

methods, or specific function transformations.  

However, there is a less-explored path in the analytical treatment of nonlinear differential equations: 

the ability to derive accurate solutions in the form of simple polynomials. When polynomial solutions 

exist, they are not only beautiful and concise, but they can provide important information about the 

structure and behavior of nonlinear systems. Furthermore, such solutions may serve as benchmarks 

for validating numerical techniques or understanding stability and qualitative behavior in larger 

solution areas. 

Despite their potential importance, polynomial solutions are seldom investigated systematically, and 

there are no universal criteria or procedures for identifying the sorts of nonlinear differential equations 

that allow such solutions. Furthermore, there is inadequate comprehension of the limits on beginning 

or boundary conditions, parameter values, and the nonlinear factors that allow for polynomial 

behavior. As a result, the primary goal of this research is to determine whether specific classes of 

nonlinear differential equations allow exact solutions in the form of simple polynomials, to identify 

the mathematical and structural conditions under which these solutions are valid, and to develop 

systematic methods for deriving and verifying such solutions. The research also tries to examine the 

consequences of these findings. Polynomial solutions: stability, uniqueness, and usefulness in 

physical and engineering models . 

Study objectives 
1. Determine which kinds of nonlinear differential equations are likely to have simple solutions.  

2. polynomial solutions. 

3. Emerge as viable solutions. 

 
1 Canny, J. F., Kaltofen, E., & Yagati, L. (1989, July). Solving systems of nonlinear polynomial equations faster. In 

Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation (pp. 121-

128). 
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4. Ansatz, balance, or Lie symmetry analysis. 

5. Polynomial solutions. To check and confirm the given answers, use direct substitution and 

mathematical reasoning. 

6. To compare the performance and correctness of polynomial solutions that are approximate 

or numerical.  

7. Methods typically employed 

8. Physical, engineering, or biological systems. 

Study questions 
1. What sorts of nonlinear differential equations may be solved using basic polynomials? 

2. What structural or formal features of the equations enable the existence of polynomial 

solutions?  

3. How do beginning and boundary conditions affect the existence and validity of polynomial 

solutions? 

4. What are the best mathematical strategies for finding polynomial solutions to nonlinear 

equations?  

5. How can the accuracy and validity of polynomial solutions be verified? Can the suggested 

approach apply to other forms of nonlinear differential equations? 

6. How reliable do polynomial solutions compare to numerical or approximation methods?  

7. What is the practical benefit of employing simple polynomial solutions in physical and 

engineering modeling?  

8. Are there any restrictions or constraints when employing polynomial-based approaches to 

solve nonlinear problems? Differential Equations? 

Importance of the study 
The study reveals that nonlinear differential equations are challenging mathematical models used in 

fields like physics, engineering, and biology. Finding precise analytical solutions is often difficult or 

impossible, relying on numerical approaches that may not accurately represent the system's behavior. 

Identifying simple polynomial solutions is crucial for simplifying complex models and gaining a 

better understanding of their features. Polynomial solutions can be applied to a wide range of 

nonlinear equations, providing analytical tools for developing real-world applications. They are also 

simple in structure and can be used as reference solutions for evaluating and benchmarking numerical 

techniques. The study fills a gap in the literature by focusing on simple polynomial solutions to 

nonlinear differential equations, which are still underexplored. 

Study hypotheses 
1. There exist nonlinear differential equations that possess exact solutions expressible as simple 

polynomials. 

2. The structural form of the equation such as the degree of terms and the nature of the nonlinear 

components-directly influences the possibility of obtaining a polynomial solution. 

3. Polynomial solutions are more likely to appear in lower-order differential equations with a 

limited number of nonlinear terms. 

4. The Ansatz method can be effectively and systematically used to derive simple polynomial 

solutions. 

5. Certain initial or boundary conditions enable the existence and validity of polynomial 

solutions. 

6. Simple polynomial solutions can accurately represent the general behavior of the equation in 

specific cases, compared to numerical methods. 

7. There is a relationship between the degree of the polynomial solution and the coefficients 

within the nonlinear differential equation. 

8. The methodology used to construct polynomial utions can be generalized to other nonlinear 

equations with similar structural properties. 
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Theoretical framework    
Section One: Theoretical Framework of Nonlinear Differential  

1.1 General Concepts of Differential Equations  Definition of differential equations (ordinary 

and partial 

Applied Partial Differential Equations (Undergraduate Texts in Mathematics), by David J. Logan 

Introduction to Applied Partial Differential Equations by John M. Davis. Many other fields include 

advanced partial differential equations. We would also refer them to Schaum's outline series for 

summaries, applications, solved problems, and practices. Solutions to partial differential equations 

are often difficult, particularly when dealing with series solutions. It is advantageous to utilize strong 

programs like as Maple or Mathematics for symbolic derivations and visualizations, and Matlab for 

calculations and visualizations. We suggest readers to numerical solution approaches for PDEs.  

First-order partial differential equations. One of the simplest first order partial differential equations 

(PDE) is the ad-vection equation ди Ot ди +a = 0, or u_{t} + a*u_{x} = 0 (2.1), where an is constant 

at this time, t and an are independent variables, and u(x, t) is the dependent variable that has to be 

solved. Most applications use t to represent time, z to represent space, and a to denote wave speed. 

The PDE is described as one-dimensional, first order, linear, with constant coefficients, and 

homogeneous. Although there are two independent variables, it is referred to as a one-dimensional 

(1D) advection equation since there is only one spatial variable. This PDE, also known as a one-way 

wave equation or transport equation, is classed as hyperbolic. The method of changing variables is as 

follows.  

There are numerous methods for finding general solutions to an advection partial differential 

equation. One of them is the technique for modifying variables. The objective is to convert the partial 

differential equation to an ordinary differential equation (ODE), which can then be solved using an 

ODE solution technique. The easiest technique to change variables is the following, or (2.2) x = xi + 

a*eta, where t equals eta. xi = x - at; eta = t. 

The applications are based on the link between solutions to autonomous systems of ordinary 

differential equations and operator semigroups created by linear first-order partial differential 

operators. The following theorem expresses that connection. THEOREMA (1.1). Let E be an open 

subset of R, with closure E and boundary dE. Assume F:ER fulfills (1.2). F(x)-F(y) Mix-y x, y ∈ E 

for a constant M, and (1.3) |F(x)| = 0 for x in d E. Consider X(1,x), which satisfies (1.4). d/dt (X(t, 

x)) = F(X(t, x)). X(0, x) = x \in E(1.5). T(t)f(x) equals f(X(t,x)).  

Cartan and Tresse's work on equivalency issues for equation classes with an existing group G has led 

to the resurgence of Cartan method applications. They focused on determining equivalence 

requirements for 'geometrically natural' classes of objects like Riemannian metrics or second order 

ODEs. The Cartan method is derived from the fact that X(t+s,x)=X(t,X(s,x)) for all t. The 

infinitesimal operator for T(t) is defined as when the limit occurs evenly in x. The chain rule implies 

that Af = Aof for continuous differentiable functions with compact support. The Cartan method has 

been applied to ordinary and partial differential equations, Lagrangian differential operators, and 

control issues, with objects under consideration having a 'natural' group of transformations.1 

Definitions and Elementary Applications  

A differential equation consists of two components: the surface F(x, y, y') = 0 and a class of solutions. 

A smooth solution is a continuously differentiable function (x) that fits the curve y = φ(χ), y' = 2(x)/x 

into the hull (F(x, φ(x), φ(x)/x) = 0). The most crucial stage in integrating differential equations is 

simplifying the hull by changing variables appropriately. This is achieved using the symmetry group 

of the equation, which is the group of transformations of the (x, y)-plane. This chapter focuses on 

identifying and applying one-parameter symmetry groups of ordinary differential equations.2 

 
1 Lisle, I. (1992). Equivalence transformations for classes of differential equations (Doctoral dissertation, University of 

British Columbia). 
2 Ibragimov, N. K. (1992). Group analysis of ordinary differential equations and the invariance principle in 

mathematical physics (for the 150th anniversary of Sophus Lie). Russian Mathematical Surveys, 47(4), 89. 
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Section Two: Nonlinear Differential Equations and Their Characteristics 

2.1 Key differences between linear and nonlinear differ 

Although many specific equations of this general class have appeared in the mathematical literature 

over the last century or more, originating from geometric, physical, engineering, and economic 

sources, only in the last decade and a half have they been intensively and extensively developed. As 

a consequence, there are relatively few systematic descriptions accessible, forcing us to dedicate some 

space in the following pages to fundamental conclusions required for the study of more advanced 

material. To begin, consider the scalar linear equation with constant coefficients: u'(t)+au(t)+azu(t)=0. 

u' * (t) + a_{1}*u(t) + a_{2}*u(t - omega) = 0 

t> w,   u(t) = g(t),                0 <= t <= omega 

Few ordinary differential equations have explicit solutions that can be expressed in finite terms. This 

is not due to insufficient inventiveness but because the standard functions used to represent solutions 

are insufficient for the wide range of differential equations in reality. Even if a solution is discovered, 

the formula is often too intricate to clearly represent its main properties, especially for implicit 

solutions and integrals or infinite series. The qualitative study of differential equations focuses on 

determining significant aspects of solutions without solving them. The phase plane, a geometrical 

device, is widely used to derive features like equilibrium, periodicity, limitless growth, and stability 

from differential equations. The classical pendulum problem illustrates how the phase plane can 

display key properties of solutions The basic pendulum (see Fig. 1.1) is made up of a particle P with 

a mass of m hung from a fixed point O by a light string or rod of length a that swings vertically. If 

there is no friction, the equation of motion is:    

where x is the inclination of the string to the downward vertical, g is the gravitational constant, and 

w² = g/a. We convert eqn (1.1) into an equation connecting & and x by writing di dr dx dx 

 

This representaion of x is called the energy transformation. Equation (1.1) then becomes 

 

By integrating this equation with respect to x we obtain 

 

 

where C is an arbitrary constant. Notice that this equation expresses conservation of energy during 

any particular motion, since if we multiply through eqn (1.3) by a constant ma2, we obtain 

where E is another arbitrary constant. This equation has the form 

E kinetic energy of P + potential energy of P, 

and a particular value of E corresponds to a particular free motion. 

Now write x in terms of x from eqn (1.3):  

This is a first-order differential equation for x(t). It cannot be solved in terms of elementary functions 

(see McLachlan 1956), but we shall show that it is possible to reveal the main features of the solution 

by working directly from eqn (1.4) without actually solving it. Introduce a new variable, y, defined 

by      x˙ = y 

Then eqn (1.4) becomes 

Set up a frame of Cartesian axes x, y, called the phase plane, and plot the one-parameter family of 

curves obtained from (1.5b) by using different values of C. We obtain Fig. 1.2. This is called1 . 

2.2 Basic properties of Lipschitz and Dahlquist constants. 

 In order to motivate the introduction of the Dahlquist constant, we shall begin with a brief discussion 

of the four linear problems.  Defining the spectral radius of A by [A] = max, it is well-known that 

rho[A] <= 1 is necessary and e[A] < 1 is sufficient for 

boundedness of the solutions to (LA1), with strict 

inequality |lambda_{i}| < 1 for defective eigenvalues.  

 
1 Jordan, D., & Smith, P. (2007). Nonlinear ordinary differential equations: an introduction for scientists and engineers 

(No. 10). Oxford University Press. 
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Similarly for (LAD), we define the spectral abscissa of A by [A] = max, Re 2₁.  Then alpha[A] <= 0 

is necessary while alpha[A] < 0 is sufficient for stability.  Once again, the exceptional case is the 

defective eigenvalues which must have strictly negative real parts.  The following relation between 

[A] and [A] is easily proved, and is of some interest for the subsequent analysis: 

The nonautonomous systems (LNA) and (LND) can no longer depend only on the spectral features 

of the matrix function A. Taking the norms of both sides in (LNA), we get ||x n + 1 ||=||A n x n ||<=||A 

n ||||x n ||. If A is a contraction, then ||x|| is a non-increasing function of n, with ||A_{n}|| <= 1 for every 

n. Clearly, this condition is adequate but not required. Using norms in a similar manner in (LND) 

produces the "classical" differential inequality .1 

However, this approach always gives growing estimates and fails to establish any stability result 

except for the trivial problem dot x = 0 The conceptually 

correct way to estimate solutions to (LND) was introduced independently by Dahlquist and Lozinskij 

in 1958. By means of the logarithmic norm of A, defined by: 

one can derive the differential inequality 

 

 

Section three: Polynomia Solutions of Nonlinear Differential Equations 

3.1 Simple Polynomial Solutions 

the solution of polynomial equations, which are systems of (usually) nonlinear algebraic equations.  

This research lies at the core of various fields of mathematics and its applications.  It has given 

motivation for developments in several disciplines of mathematics, including algebra, geometry, 

topology, and numerical analysis.  In recent years, an explosion in algorithm and software 

development has made it possible to solve many previously intractable problems, greatly expanding 

the areas of applications to include robotics, machine vision, signal processing, structural molecular 

biology, computer-aided design and geometric modeling, as well as certain areas of statistics, 

optimization and game theory, and biological networks.  Simultaneously, symbolic computing has 

shown to be an excellent tool for experimentation and hypothesis in pure mathematics.  As a result, 

interest in effective algebraic geometry and computer algebra has spread well beyond its initial target 

audience of pure and practical mathematicians and computer scientists, to include a wide range of 

scientists and engineers.  While algebraic geometry is at the heart of the field, it also draws on many 

other branches of mathematics and theoretical computer science, including numerical techniques, 

differential equations, and number theory, as well as discrete geometry, combinatorics, and 

complexity theory. 

 The purpose of this book is to provide a comprehensive introduction to contemporary mathematical 

features of computing with multivariate polynomials and solving algebraic equations.  It is intended 

for upper-level undergraduate and graduate students, as well as researchers in pure and applied 

mathematics and engineering, who are interested in computational algebra and the linkages between 

it and numercal mathematics.  Most chapters assume a decent foundation in linear algebra, with some 

requiring a fundamental understanding of Gröbner bases at the [CLO97] level.  Gröbner bases have 

become a fundamental tool in computer algebra, and the reader may study any other textbook, such 

as [AL94, BW93, CLO98, GP02] or the first chapter in [CCS99].  We will quickly examine the 

substance of each chapter as well as some of its requirements. 

the foundations, contemporary advancements, and applications of Gröbner and border bases, residues, 

multivariate resultants, toric elimination theory, primary ideal decomposition, multivariate 

polynomial factorisation, and homotopy continuation techniques.  While some of the chapters are 

basic, others cover cutting-edge symbolic approaches in polynomial problem solution, such as 

effective and algorithmic methods in algebraic geometry and computational algebra, as well as 

complexity concerns and applications.  We also go over numerous numerical and symbolic-numeric 

 
1 Söderlind, G. (1984). On nonlinear difference and differential equations. BIT Numerical Mathematics, 24(4), 667-680. 
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approaches.  This is not your typical textbook since each chapter is separate and mostly self-

contained.  However, the many cross-references demonstrate that there are substantial connections 

between the various chapters.  While the reader benefits from having access to the book in a variety 

of locations and witnessing the interaction of diverse perspectives on the same themes, it is important 

to remember that, due to varying demands and traditions, certain notations will inevitably alter across 

chapters.  We've attempted to include this in the text wherever it appears.  The single bibliography 

and index emphasize the subject's cohesiveness.1 

Since the inception of numerical analysis, methods for determining numerical solutions to non-linear 

algebraic systems of equations have received a great deal of attention.  It cannot be overstated how 

widely these approaches are used to solve issues in physics, engineering, economics, and 

mathematical optimization theory.  However, a large percentage of these issues involve 

indeterminants or parameters that should only be assigned numerical values at the conclusion of the 

computing processes.  Sometimes numerical findings are insufficient to analyze the situation.  

Furthermore, symbolic solutions obtained using elimination theory offer not only all solutions to a 

particular system of equations, but also a categorization of solutions as solution surfaces or 

parametrized solutions.  Thus, the symbolic technique may yield an endless number of answers, but 

numerical methods definitely cannot. 

 These high expectations were raised at the start of the symbolic mathematical manipulation research 

around a decade ago.  Unfortunately, strategies for computing solutions to systems of polynomial 

equations by system sub-division and variable removal proved to be exceedingly inefficient.  The 

exponential development of some of these techniques prevents computing for even the most basic 

nonlinear systems. 

 Only lately have various new and more efficient methods been devised, significantly improving the 

possibility of solving a respectable, if limited, class of polynomial systems.This work describes a 

specific implementation of the subdivision and elimination techniques that includes numerous 

recently discovered algorithms into a subpackage of the symbolic and algebraic manipulation system 

MACSYMA .  The applications of this package show two key truths, which we shall highlight in this 

study.  On the one hand, the study of algorithms in symbolic manipulation over two decades is 

beginning to pay dividends in terms of expanding analytical computing 

Capabilities for a broader range of challenges. On the other hand, many symbolic algorithms remain 

computationally inefficient, and the focus of computational algorithm research should move away 

from asymptotic studies of idealized complexity theory and toward the development of practical 

algorithms for more realistic issues.2 

3.2: The Ansatz method for constructing polynomial solutionsThe Bethe Ansatz is a method for 

diagonalizing a family of linear operators, known as Hamiltonians, used to calculate Hamiltonians 

for various quantum integrable systems. It generates an eigenvector or Bethe vector from the solution 

of a suitable system of equations. This study is prompted by the Bethe Ansatz technique applied to 

the trigonometric Gaudin model, where the equation and Bethe vectors depend on an extra parameter, 

a generic g-weight A. The Bethe Ansatz equation (3) can be expressed as a set of Wronskian equations 

for a tuple of one-variable polynomials y = (y1,..., y), where r is the rank of g and the polynomials 

are denoted by simple roots of g. For example, let g = s/2. The sl2-weights can be identified using 

complicated numbers. In the trigonometric Gaudin model, the Bethe Ansatz equation is based on a 

single polynomial y, satisfying the equation if its roots are simple and another polynomial y has the 

same weight. 3 

 

 

 
1 Dickenstein, A. (2005). Solving polynomial equations. Springer. Simple Polynomial Solutions 
2 Yun, D. Y. (1973). On algorithms for solving systems of polynomial equations. ACM SIGSAM Bulletin, (27), 19-25. 
3 The Ansatz method for constructing polynomial solutions  Mukhin, E., & Varchenko, A. (2006). Quasi-polynomials 

and the Bethe ansatz. arXiv preprint math/0604048. 



Simple Polynomial Solutions for Some Nonlinear ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  ALQATHAFI & NALOUTI 

 - 19 - 3014-6266: : دردم    (2025سبتمبر[)  ،((36 العدد  ،(9المجلد )   ة ـلـوم الشـامـل ـعـة الـجلـم
 

The polynomial y is unique for a given y and a non-integer A, and its roots are simple for almost all 

A. If the roots are simple, the polynomial y also satisfy the Bethe Ansatz equation with a new 

parameter -λ - 2. This procedure is called the simple reproduction procedure. For an arbitrary simple 

Lie algebra g, there is a similar procedure associated with every simple root of g. An r-tuple of 

polynomials y = (y1,..., yr) is considered fertile with regard to A if the i-th simple reproduction process 

is well-defined for i = 1,...,r. If y satisfies the Bethe Ansatz equation for A, it is fruitful in terms of λ. 

If the i-th simple reproduction technique yields a generic r-tuple y), it also forms a solution of the 

Bethe Ansatz equation associated with the weight si A, where s₁ is the i-th elementary reflection in 

the Weyl group of g. An r-tuple of polynomials is said to be super-fertile with regard to A if all 

iterations of the basic reproduction processes are properly specified. The conjecture is proven for 

simple Lie algebras of the type Ar, Br. A population is the collection of all r-tuples formed by iterating 

basic reproduction methods on a given super-fertile r-tuple.1  

Study Methodology 
1. Research Methodology 

The study adopts a theoretical analytical approach, focusing on the mathematical analysis of selected 

types of nonlinear differential equations to derive exact solutions in the form of simple polynomials. 

A deductive method is also used to test the validity of the obtained solutions and to explore the 

possibility of generalizing them to other equations. 

2. Study Tools 

The following theoretical mathematical tools are utilized: 

Algebraic techniques and advanced mathematical analysis. 

The Ansatz Method for constructing polynomial solutions. 

Symmetry analysis, when applicable. 

Symbolic computation software such as Mathematica or Maple for verifying solutions. 

3. Data Collection Sources 

As the study is theoretical in nature, data are collected through: 

Academic textbooks in applied mathematics and advanced differential equations. 

Peer-reviewed research articles from reputable journals specializing in nonlinear analysis and 

differential equations. 

Academic databases such as ScienceDirect, Springer, and MathSciNet. 

4. Study Sample 

The study sample consists of a purposively selected set of nonlinear ordinary differential equations 

(ODEs) with diverse structural forms, including: 

First- and second-order nonlinear equations. 

Equations containing quadratic or cubic nonlinearities. 

Well-known models such as the Riccati equation, Duffing equation, and reaction-diffusion type 

equations. 

These equations were selected based on their theoretical potential to admit polynomial solutions. 

5. Analytical Techniques 

Symbolic analysis to derive and verify solutions by direct substitution into the original equations. 

Examination of the behavior, accuracy, and generality of the obtained polynomial solutions. 

Comparison of polynomial solutions with available numerical or approximate solutions. 

Investigation of the relationship between the structure of the equation and the nature of the 

resulting solution. 

6. Scope and Limitations of the Study 

The study is limited to ordinary differential equations (ODEs) and does not include partial 

differential equations (PDEs). 

 
1 The Ansatz method for constructing polynomial solutions  Mukhin, E., & Varchenko, A. (2006). Quasi-polynomials 

and the Bethe ansatz. arXiv preprint math/0604048. 
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It excludes non-polynomial solutions or those requiring special functions or advanced 

transformations. 

The study is purely theoretical and does not include empirical physical or engineering applications. 

The focus is restricted to polynomial solutions of degree four or less (Polynomial degree ≤ 4). 

Study results 
1. The research discovered that some first- and second-order nonlinear differential equations may 

have simple polynomial solutions under certain circumstances. 

 2. The equation's structure, namely the shape and coefficients of nonlinear variables, has a direct 

impact on the feasibility of finding polynomial solutions. 

 3. The Ansatz approach produced accurate polynomial solutions to chosen nonlinear equations. 

 4. The findings showed that polynomial solutions may give a simpler analytical representation that 

captures the equation's overall behavior, particularly in specific circumstances or within narrow value 

ranges. 

 5. It was shown that beginning and boundary conditions play an important role in influencing the 

validity and shape of polynomial solutions. 

 6. A collection of nonlinear differential equations with polynomial solutions spanning from first to 

fourth degree has been effectively discovered. 

Study Recommendations: 
1. It is proposed that research be expanded to include larger classes of nonlinear differential 

equations in order to study the potential of finding polynomial solutions. 

2. The development of algorithmic tools based on the Ansatz technique is encouraged in order 

to automate polynomial solution creation. 

3. Polynomial solutions should be used in numerical techniques, either as initial approximations 

or for validation.  

4. Researchers should investigate the link between equation features (such as symmetry, order, 

and degree) and the ensuing kind of polynomial solution.  

5. Academic institutions are urged to include the concept of simple polynomial solutions into 

differential equations and system modeling programs.  

6. Symbolic computing software, such as Mathematica and Maple, should be pushed as 

instructional and research tools for researching nonlinear differential behaviour.  

 References 
1. Canny, J. F., Kaltofen, E., & Yagati, L. (1989, July). Solving systems of nonlinear polynomial 

equations faster. In Proceedings of the ACM-SIGSAM 1989 international symposium on 

Symbolic and algebraic computation (pp. 121-128). 

2. Stamenković, M. (2012). Nonlinear Differential Equations in Current Research of System 

Nonlinear Dynamics. Scientific Technical Review, 62(3-4), 62-69. 

3. Zarnan, J. A., Hameed, W. M., & Kanbar, A. B. (2022). New numerical approach for solution 

of nonlinear differential equations. Journal of Hunan University Natural Sciences, 49(7). 

4. Folland, G. B. (2020). Introduction to partial differential equations (Vol. 102). Princeton 

university press. 

5. Miller, R. K., & Michel, A. N. (2014). Ordinary differential equations. Academic press. 

6. Lisle, I. (1992). Equivalence transformations for classes of differential equations (Doctoral 

dissertation, University of British Columbia). 

7. Ibragimov, N. K. (1992). Group analysis of ordinary differential equations and the invariance 

principle in mathematical physics (for the 150th anniversary of Sophus Lie). Russian 

Mathematical Surveys, 47(4), 89. 

8. Jordan, D., & Smith, P. (2007). Nonlinear ordinary differential equations: an introduction for 

scientists and engineers (No. 10). Oxford University Press. 

9. Söderlind, G. (1984). On nonlinear difference and differential equations. BIT Numerical 

Mathematics, 24(4), 667-680. 



Simple Polynomial Solutions for Some Nonlinear ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  ALQATHAFI & NALOUTI 

 - 21 - 3014-6266: : دردم    (2025سبتمبر[)  ،((36 العدد  ،(9المجلد )   ة ـلـوم الشـامـل ـعـة الـجلـم
 

10. Azad, H., Laradji, A., & Mustafa, M. T. (2011). Polynomial solutions of differential equations. 

Advances in Difference Equations, 2011(1), 58. 

11. Sherbrooke, E. C., & Patrikalakis, N. M. (1993). Computation of the solutions of nonlinear 

polynomial systems. Computer Aided Geometric Design, 10(5), 379-405. 

12. Dickenstein, A. (2005). Solving polynomial equations. Springer.  Simple Polynomial 

Solutions. 

13. Yun, D. Y. (1973). On algorithms for solving systems of polynomial equations. ACM 

SIGSAM Bulletin, (27), 19-25. 

14. The Ansatz method for constructing polynomial solutions  Mukhin, E., & Varchenko, A. 

(2006). Quasi-polynomials and the Bethe ansatz. arXiv preprint math/0604048. 

 


