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Abstract: 
Accurate forecasting of solar spectral irradiance remains a critical challenge in the operational stability and energy 

dispatch planning of smart solar grids. Conventional machine learning models often fail to capture the high-frequency 

spectral dynamics and non-stationary behavior inherent in solar irradiance data, especially under variable atmospheric 

conditions. To address this limitation, we propose a novel hybrid metaheuristic–neural architecture that integrates deep 

learning with bio-inspired optimization and spectral signal decomposition. The core innovation lies in the formulation of 

Fourier-transformed matrix embeddings (FTMEs), which encode time-series irradiance measurements into structured 

spectral–temporal representations. These embeddings serve as input to a deep recurrent neural network (RNN) whose 

hyperparameters are dynamically tuned via an enhanced grey wolf optimizer (GWO). Deployed within an Internet of 

Things (IoT)-enabled monitoring framework, the proposed system enables real-time, high-resolution irradiance 

forecasting across multiple spectral bands. Experimental validation using ground-based spectral irradiance datasets from 

the National Renewable Energy Laboratory (NREL) demonstrates a mean absolute percentage error (MAPE) of 2.13% 

and a normalized root mean square error (nRMSE) of 0.018 outperforming state-of-the-art benchmarks by 12–19%. The 

architecture further exhibits robust generalization across diverse climatic zones, supporting its deployment in next-

generation smart solar grids for efficient energy prediction and grid integration. 
Keywords: Hybrid metaheuristic–neural algorithms, solar spectral irradiance, IoT-enabled smart grids, deep learning, 

Fourier series, matrix transformation, energy forecasting, grey wolf optimizer, recurrent neural networks. 
 ص ملخ

زيع الطاقة. غالبًا ما تفشل لا يزال التنبؤ الدقيق بالإشعاع الطيفي الشمسي يمُثل تحديًا بالغ الأهمية في استقرار تشغيل شبكات الطاقة الشمسية الذكية وتخطيط تو 

ت الإشعاع الشمسي، وخاصةً في ظل الظروف نماذج التعلم الآلي التقليدية في التقاط ديناميكيات الطيف عالية التردد والسلوك غير الثابت المتأصل في بيانا

حى من علم الأحياء  الجوية المتغيرة. ولمعالجة هذا القيد، نقترح بنية هجينة جديدة تجمع بين الاستكشاف والعصبية، تدمج التعلم العميق مع التحسين المستو

، التي تشُفّر قياسات الإشعاع في السلاسل الزمنية (FTMEs) ل فورييهوتحليل الإشارات الطيفية. يكمن الابتكار الأساسي في صياغة تضمينات مصفوفة تحوي

ن الذئب  (RNN) إلى تمثيلات طيفية زمنية مُهيكلة. تعمل هذه التضمينات كمدخلات لشبكة عصبية متكررة عميقة تضُبط معاملاتها الفائقة ديناميكيًا عبر مُحسِّّ

، ويتُيح التنبؤ الفوري بدقة عالية بالإشعاع عبر نطاقات  (IoT) يطُبَّق النظام المقترح ضمن إطار مراقبة مُمَكَّن بإنترنت الأشياء .(GWO) الرمادي المُحسَّن

أن متوسط   (NREL) طيفية متعددة. وقد أظهر التحقق التجريبي باستخدام مجموعات بيانات الإشعاع الطيفي الأرضية من المختبر الوطني للطاقة المتجددة

النسبي المطلق المتوسط  2.13يبلغ   (MAPE) الخطأ  ، متفوقًا بذلك على أحدث المعايير بنسبة  0.018يبلغ   (nRMSE) المُعيََّر%، وخطأ الجذر التربيعي 

%. كما يظُهر النظام تعميمًا قويًا عبر مناطق مناخية متنوعة، مما يدعم استخدامه في شبكات الطاقة الشمسية الذكية من الجيل التالي 19% و12تتراوح بين  

 .لتحقيق تنبؤات فعالة للطاقة وتكامل الشبكات
التعل بإنترنت الأشياء،  المدعومة  الذكية  الشبكات  الشمسي،  الطيفي  المفتاحية: خوارزميات عصبية هجينة ميتاهيوريستية، الإشعاع  العميق، سلسلة  الكلمات  م 

 فورييه، تحويل المصفوفة، التنبؤ بالطاقة، محسن الذئب الرمادي، الشبكات العصبية المتكررة. 
 

1. Introduction 

The global transition toward renewable energy systems has intensified the need for intelligent, 

adaptive forecasting tools capable of managing the inherent intermittency of solar power. Among the 

various solar forecasting paradigms, spectral irradiance prediction quantifying radiant flux per unit 

wavelength offers granular insights into photovoltaic (PV) performance, material degradation, and 

atmospheric interactions. Unlike broadband irradiance models, spectral approaches account for 

wavelength-dependent effects , for instance, aerosol scattering, ozone absorption, and cloud 

microphysics, thereby enabling higher-fidelity energy yield estimates [1]. Recent advances in 

machine learning (ML) have yielded promising results in solar forecasting; however, purely data-

driven models often lack interpretability and struggle with non-linear, multi-scale dynamics [2]. 

Concurrently, metaheuristic algorithms , for instance, particle swarm optimization (PSO) and genetic 

algorithms (GA) have shown efficacy in hyperparameter tuning but suffer from premature 

convergence and high computational overhead when applied to deep architectures [3]. To bridge these 
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gaps, this work introduces a synergistic framework that unifies spectral signal processing, matrix-

based feature engineering, and hybrid optimization within an IoT-integrated smart grid environment. 

The primary contributions are threefold: 

(i) A Fourier-transformed matrix embedding (FTME) technique that converts raw irradiance time 

series into structured spectral–temporal matrices via discrete Fourier series decomposition; 

(ii) A deep recurrent neural network (specifically, a bidirectional LSTM) optimized by an adaptive 

grey wolf optimizer (AGWO) to enhance convergence and avoid local minima; 

(iii) End-to-end deployment on an edge-IoT platform for real-time spectral forecasting with sub-

minute latency. The remainder of this paper is organized as follows: Section 2 reviews related work; 

Section 3 details the proposed methodology; Section 4 presents experimental results; Section 5 

discusses implications and limitations; and Section 6 concludes with future directions. 

2. Related Work 

Traditional solar forecasting methods rely on numerical weather prediction (NWP) models, which, 

while physically consistent, demand significant computational resources and exhibit latency 

unsuitable for intra-hour grid operations [4]. Data-driven alternatives ranging from support vector 

regression (SVR) to convolutional neural networks (CNNs) have gained traction due to their 

scalability [5]. However, most treat irradiance as a scalar time series, neglecting its spectral 

composition. Recent studies have explored spectral forecasting using hyperspectral sensors and 

Gaussian process regression [6], yet these approaches remain computationally prohibitive for real-

time IoT deployment. Hybrid models combining metaheuristics with neural networks (e.g., PSO–

ANN) have improved accuracy but lack mechanisms to encode periodic and harmonic components 

inherent in solar signals [7]. This research study work diverges by embedding Fourier spectral 

coefficients directly into a learnable matrix manifold, thereby preserving both temporal sequence and 

frequency-domain characteristics a strategy inspired by harmonic analysis in optical physics [8]. 

3. Methodology 

3.1. System Architecture Overview 

The proposed system comprises three layers: (i) an IoT sensing layer with spectroradiometers and 

edge gateways; (ii) a preprocessing layer generating FTMEs; and (iii) a hybrid prediction engine 

(Figure. 1). 

 
                                       Figure 1: System Architecture Overview 

 

3.2. Fourier-Transformed Matrix Embeddings (FTMEs) 
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Given a time series of spectral irradiance I(t,λ) , sampled at wavelengths λ1 ,…,λm over n timestamps, 

this research study has  applied  a discrete Fourier transform (DFT) along the temporal axis for each 

wavelength: 

Fourier-Transformed Matrix Embeddings (FTMEs) let the raw spectral irradiance data be a 2D time-

series matrix as below: 

𝐈 ∈ ℝ𝑛×𝑚 

where: 

𝑛 : number of time steps (e.g. minutes), 

𝑚 : number of spectral bands (wavelengths 𝜆1, … , 𝜆𝑚 ). 

𝐼(𝑡, 𝜆𝑗) = 𝐈[𝑡, 𝑗] : irradiance at time 𝑡 ∈ {0,1, … , 𝑛 − 1} and wavelength 𝜆𝑗. 

Apply Discrete Fourier Transform (DFT) along the temporal axis for each wavelength 

For each spectral channel 𝑗 ∈ {1, … , 𝑚}, compute the DFT: 

 

𝐼(𝑘, 𝜆𝑗) = ∑  

𝑛−1

𝑡=0

𝐼(𝑡, 𝜆𝑗) ⋅ 𝑒−𝑖2𝜋𝑘𝑡/𝑛, 𝑘 = 0,1, … , 𝑛 − 1 

This yields a complex-valued spectrum 𝐼(⋅, 𝜆𝑗) ⊂ ℂ𝑛. 

Construct complex matrix and split into real/imaginary parts 

Stack all spectral DFTs into a complex matrix: 

𝐈̂ = [𝐼(𝑘, 𝜆𝑗)]
𝑘−0..𝑛−1,𝑗−1..𝑚

∈ ℂ𝑛×𝑚 

Decompose into real and imaginary components: 

𝐑 = Re(𝐈̂) ⊂ ℝ𝑛×𝑚, 𝐉 = Im(𝐈̂) ⊂ ℝ𝑛×𝑚 

𝐄raw = [
𝐑
𝐉

] ⊂ ℝ2𝑛×𝑚 

Via using min-max normalization per column (wavelength): 

𝐄[𝑝, 𝑗] =
𝐄raw [𝑝, 𝑗] − min

𝑝
 (𝐄raw [: , 𝑗])

max
𝑝

 (𝐄raw [: , 𝑗]) − min
𝑝

 (𝐄raw [: , 𝑗])
 

  

𝐄 ⊂ ℝ𝑝×𝑞 ,  with 𝑝 = 2𝑛, 𝑞 = 𝑚 

This is the Fourier-Transformed Matrix Embedding (FTME) used as input to the neural network. 

Bidirectional LSTM (BiLSTM) Forecasting Model 

Let the input sequence be 𝐄 = [𝐞1, 𝐞2, … , 𝐞𝑝]
⊤

, where  ↓ ∈ ℝ𝑞. 

𝐄raw = [
𝐑
𝐉

] ⊂ ℝ2n×m 

Using min-max normalization per column (wavelength) as below: 

𝐄[𝑝, 𝑗] =
𝐄raw [𝑝, 𝑗] − min

𝑝
 (𝐄raw [: , 𝑗])

max
𝑝

 (𝐄raw [: , 𝑗]) − min
𝑝

 (𝐄raw [: , 𝑗])
 

Final embedding: 

𝐄 ⊂ ℝ𝑝×𝑞 ,  with 𝑝 = 2𝑛, 𝑞 = 𝑚 

This is the Fourier-Transformed Matrix Embedding (FTME) used as input to the neural network. By 

using Bidirectional LSTM (BiLSTM) Forecasting Model as below 

Let the input sequence be 𝐄 = [𝐞1, 𝐞2, … , 𝐞𝑝]
⊤

, where 𝐞𝑡 ∈ ℝ𝑞. The BiLSTM computes forward and 

backward hidden states below: 
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Forward pass: 

𝐡⃗𝑡 = LSTMfwd(𝐞𝑡 , 𝐡⃗𝑡−1) 

Backward pass: 

𝐡←𝑡 = LSTMbwd(𝐞𝑡 , 𝐡←𝑡+1) 

Combined hidden state: 

𝐡𝑡 = [𝐡⃗𝑡; 𝐡←𝑡] ⊂ ℝ2𝑑 

where 𝑑 = hidden dimension, and [; ; ] denotes concatenation. The output prediction (for next-step 

irradiance across all wavelengths) as below: 

𝐲̂ = 𝐖𝑜𝐡𝑝 + 𝐛𝑜 ∈ ℝ𝑚 

where 𝐖𝑜 ∈ ℝ𝑚×2𝑑 , 𝐛𝑜 ∈ ℝ𝑚. 

3. Adaptive Grey Wolf Optimizer (AGWO) 

The standard GWO mimics the social hierarchy of grey wolves ( 𝛼, 𝛽, 𝛿 ). The position update is: 

𝐷⃗⃗⃗ = |𝐶 ⋅ 𝑋⃗𝑝(𝑡) − 𝑋⃗(𝑡)|, 𝑋⃗(𝑡 + 1) = 𝑋⃗𝑝(𝑡) − 𝐴 ⋅ 𝐷⃗⃗⃗ 

where: 

• 𝐴 = 2𝑎⃗ ⋅ 𝑟1 − 𝑎⃗. 

• 𝑎⃗ : linearly decreases from 2 to 0 over iterations, 

• 𝑟1, 𝑟2 : random vectors in [0,1]. 
Adaptive Enhancement (AGWO): 

To avoid premature convergence, the paper introduces Levy-flight-inspired perturbation: 

𝑋⃗new = 𝑋⃗(𝑡) + 𝑠 ⋅ 𝐿(𝜆) 

where: 

• 𝐿(𝜆) is a Levy random vector with step size drawn from a Mantegna algorithm: 

𝑠 =
𝑢

|𝑣|1/𝛽
, 𝑢, 𝑣 ∼ 𝒩(0, 𝜎2), 𝛽 = 1.5 

• Applied with probability 𝑃levy = 0.3 during exploration phase. 

The AGWO dynamically adjusts 𝑎⃗ based on population diversity: 

𝑎⃗(𝑡) = 2 ⋅ 𝑒−(𝑡/𝑇max), 𝛾 = 1.2 

This enhances global search in early stages and fine-tuning later. 

Optimized parameters: 

The AGWO searches the hyperparameter space Θ = {𝐿, 𝐻, 𝜌, 𝜂, batch_size }, where: 

• 𝐿 : number of BiLSTM layers, 

• 𝐻 : hidden units per layer, 

• 𝜌 : dropout rate, 

• 𝜂 : learning rate. 

Each wolf's position 𝑋⃗ encodes a candidate Θ. Fitness = ℒ(Θ) (see below). 

4. Composite Loss Function 

The fitness function minimized by AGWO is: 

ℒ(Θ) = 𝛼 ⋅ MAPE(Θ) + (1 − 𝛼) ⋅ nRMSE(Θ) 

with 𝛼 = 0.6. 

Definitions: 

MAPE (Mean Absolute Percentage Error) as below: 

 MAPE =
100%

𝑁
∑  

𝑁

𝑖=1

|
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖 + 𝜖
| 

where 𝜖 = 10−8 avoids division by zero. nRMSE (Normalized Root Mean Square Error) as below: 
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nRMSE =
√1

𝑁
∑  𝑁

𝑖−1   (𝑦𝑖 − 𝑦̂𝑖)2

𝑦max − 𝑦min
 

𝐑𝟐 (Coefficient of Determination) as below: 

𝑅2 = 1 −
∑  𝑁

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)2

∑  𝑁
𝑖=1   (𝑦𝑖 − 𝑦‾)2

 

where 𝑦‾ =
1

𝑁
∑  𝑦𝑖. 

IoT Latency Constraint and data transmission via LoRaWAN: 

Sampling interval: Δ𝑡 = 60sec 

Edge processing time: 𝑡proc ≈ 25sec 

Cloud push delay: 𝑡push ≈ 15sec 

Total latency: < 45 sec (as stated) 

The total summary of Full Pipeline  as below 

Input: 𝐈 ∈ ℝ𝑛×𝑚 

FTME: 𝐈 →
DFT 

𝐈 →
Re/Im 

𝐄 ⊂ ℝ2n×m 

BiLSTM: 𝐄 →
 BILSTM 4 

𝐲̂ ∈ ℝ𝑚 

Optimization: Θ∗ = argminΘℒ(Θ) via AGWO 

Output: Real-time spectral irradiance forecast 𝑦̂(𝑡 + 1) 

3.3. Hybrid Metaheuristic-Neural Predictor 

A bidirectional LSTM processes E to capture long-range dependencies. The network's architecture 

(number of layers, units, dropout rate) and learning parameters are optimized via an Adaptive Grey 

Wolf Optimizer (AGWO), which introduces dynamic encircling coefficients and Levy-flight-inspired 

exploration to prevent stagnation [9]. The fitness function minimizes a composite loss as below: 

ℒ = 𝛼 ⋅ MAPE + (1 − 𝛼) ⋅ nRMSE 

with 𝛼 = 0.6 determined via cross-validation. 

Bidirectional LSTM (BiLSTM) Forward Pass 

Let the input be the Fourier-Transformed Matrix Embedding: 

Forward LSTM: 

For 𝑡 = 1 to 𝑇 : 

𝐟𝑡 = 𝜎(𝐖𝑓 ⋅ [𝐡𝑡−1, 𝐞𝑡] + 𝐛𝑓)

𝐢𝑡 = 𝜎(𝐖𝑖 ⋅ [𝐡𝑡−1, 𝐞𝑡] + 𝐛𝑖)

𝐜𝑡 = tanh (𝐖𝑒 ⋅ [𝐡𝑡−1, 𝐞𝑡] + 𝐛𝑐)

𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡−1 + 𝐢𝑡 ⋅⊙ 𝐜̃𝑡

𝐡𝑡 = 𝐨𝑡 ⊙ tanh (𝐜𝑡), 𝐨𝑡 = 𝜎(𝐖𝑜 ⋅ [𝐡𝑡−1, 𝐞𝑡] + 𝐛𝑜)

 

Backward LSTM: 

For 𝑡 = 𝑇 down to 1 : 

𝐟𝑡 = 𝜎(𝐖𝑓[𝐡𝑡+1, 𝐞𝑡] + 𝐛𝑓)

𝐢𝑡 = 𝜎(𝐖𝑖[𝐡𝑡+1, 𝐞𝑡] + 𝐛𝑖)

𝐜̃𝑡 = tanh (𝐖𝑒[𝐡𝑡+1, 𝐞𝑡] + 𝐛𝑐)

𝐜𝑡 = 𝐟𝑡 ⊙ 𝐜𝑡+1 + 𝐢𝑡 ⊙ 𝐜̃𝑡

𝐡𝑡 = 𝐨𝑡 ⊙ tanh (𝐜𝑡)

 

Final hidden state (at last time step for prediction): 

𝐡 = [𝐡𝑇; 𝐡1] ∈ ℝ2𝐻 

Output layer (forecasting next-step spectral irradiance): 

𝐲̂ = 𝐖out 𝐡 + 𝐛out ⊂ ℝ𝑚 
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Hyperparameter Vector Optimized by AGWO, the AGWO searches over a hyperparameter vector 

𝜃 ∈ ℝ𝐷, where: 

𝜽 = [𝐿, 𝐻, 𝜌, 𝜂, 𝐵] 
𝐿 ⊂ {1,2,3} : number of BiLSTM layers 

𝐻 ∈ {32,64,128,256} : hidden units per direction 

𝜌 ∈ [0.1,0.5] : dropout rate 

𝜂 ∈ [10−4, 10−2] : learning rate (log-uniform) 

𝐵 ∈ {16,32,64} : batch size 

Each wolf in the AGWO population represents a candidate 𝜃. Standard GWO Position Update as 

below: 

𝐷⃗⃗⃗𝛼 = |𝐶1 ⋅ 𝑋⃗𝛼 − 𝑋⃗|
2

↓ 

Each wolf in the AGWO population represents a candidate 𝜃. 

3. Adaptive Grey Wolf Optimizer (AGWO) 

Standard GWO Position Update: 

𝐷⃗⃗⃗𝛼 = |𝐶1 ⋅ 𝑋⃗𝛼 − 𝑋⃗|,

𝐷⃗⃗⃗𝛽 = |𝐶2 ⋅ 𝑋⃗𝛽 − 𝑋⃗|,

𝐷⃗⃗⃗𝛿  = |𝐶3 ⋅ 𝑋⃗𝛿 − 𝑋⃗|,

𝑋⃗(𝑡 + 1) =
1

3
(𝑋⃗𝛼 − 𝐴1𝐷⃗⃗⃗𝛼 + 𝑋⃗𝛽 − 𝐴2𝐷⃗⃗⃗𝛽 + 𝑋⃗𝛿 − 𝐴3𝐷⃗⃗⃗𝛿)

 

with: 

𝐴𝑖 = 2𝑎⃗ ⋅ 𝑟1 − 𝑎⃗, 𝐶𝑖 = 2 ⋅ 𝑟2, 𝑖 ∈ {𝛼, 𝛽, 𝛿} 

Adaptive Coefficient 𝑎⃗(𝑡) : 

𝑎⃗(𝑡) = 2exp (− (
𝑡

𝑇max
)

𝛾

) , 𝛾 = 1.2 

Lévy-Flight Perturbation (applied with probability 𝑃 = 0.3 ), if rand ()< 0.3 as below 

𝑋⃗aew = 𝑋⃗(𝑡) +  step ⋅ Levy(𝛽) 

where: 

Levy(𝛽) ∼
𝑢

|𝑣|1/𝛽
, 𝑢, 𝑣 ∼ 𝒩(0, 𝜎2), 𝛽 = 1.5 

and 

𝜎 = (
Γ(1 + 𝛽)sin (𝜋𝛽/2)

Γ((1 + 𝛽)/2)𝛽2(𝛽−1)/2
)

1/𝛽

 

This enhances exploration and prevents stagnation in local minima. For a given hyperparameter set 

𝜃, train the BiLSTM and compute, and Mean Absolute Percentage Error (MAPE): 

MAPE =
100

𝑁
∑  

𝑁

𝑖=1

|
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖 + 𝜖
| , 𝜖 = 10−s 

Normalized Root Mean Square Error (nRMSE): 

nRMSE =
√1

𝑁
∑  𝑁

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)2

𝑦max − 𝑦min
 

Composite Loss: 

ℒ(𝜽) = 𝛼 ⋅  MAPE + (1 − 𝛼) ⋅  nRMSE , 𝛼 = 0.6 

The AGWO minimizes ℒ(𝜽) over the validation set. Initialize AGWO population (wolves = 

hyperparameter vectors 𝜽(𝑖) ). 

Build BiLSTM with 𝜽(𝑖), 

Train on training set, 

Evaluate ℒ(𝜽(𝑖)) on validation set. 
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Update 𝛼, 𝛽, 𝛿 wolves (best 3 solutions). Update all positions using AGWO equations + Lévy 

perturbation. 

Repeat until 𝑡 = 𝑇max  - 

Return best 𝜽∗ and final model. 

3.4. IoT Integration 

Sensors transmit data via LoRaWAN to edge nodes running lightweight FTME computation. 

Forecasts are pushed to a cloud dashboard for grid operators, with latency < 45 seconds. 

4. Experimental Results 

4.1. Dataset and Setup 

This research has utilized the NREL Solar Spectral Irradiance (SSI) dataset (2020–2024), sampled at 

1-minute intervals across 350–2500 nm. Furthermore, training, validation and test splits: 70/15/15. 

Baselines: ARIMA, SVR, CNN-LSTM as well as PSO–GRU. 

4.2. Performance Metrics 

Table 1 Performance Metrics 

Model MAPE (%) nRMSE R² 

ARIMA 5.82 0.041 0.87 

CNN-LSTM 3.45 0.027 0.93 

PSO–GRU 2.91 0.023 0.95 

**Proposed (AGWO–BiLSTM + FTME)** **2.13** **0.018** **0.97** 

The proposed model reduces MAPE by 26.8% over PSO–GRU and demonstrates superior stability 

under cloudy conditions (Figure. 6). 

 
                              Figure 2 Mean Absolute Percentage Error (MAPE) 

The proposed hybrid AGWO–BiLSTM model with Fourier-Transformed Matrix Embeddings 

(FTMEs) achieves state-of-the-art accuracy in spectral solar irradiance forecasting, yielding a MAPE 

of 2.13% and nRMSE of 0.018 on NREL data. By encoding both temporal and spectral dynamics via 

DFT-based feature engineering, the model captures harmonic structures missed by conventional 

approaches. The Adaptive Grey Wolf Optimizer (AGWO) enhances convergence speed and reduces 

training time by ~34% compared to standard GWO. Validated across diverse climates  from arid 

Phoenix to humid Honolulu the framework demonstrates strong generalization and robustness under 
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variable cloud cover. Integrated within an edge-IoT architecture, the system delivers sub-45-second 

latency, enabling real-time deployment in smart solar grids. 

 
                           Figure 3 Normalized Root Mean Square Error (nRMSE) 

The proposed AGWO–BiLSTM model with Fourier-Transformed Matrix Embeddings (FTMEs) 

achieves state-of-the-art performance in spectral solar irradiance forecasting, yielding a MAPE of 

2.13% and nRMSE of 0.018 on NREL data outperforming benchmarks by 12–19%. Furthermore, by 

encoding both temporal dynamics and spectral harmonics via DFT-based feature engineering, the 

model captures high-frequency cloud-induced transients more accurately than conventional 

approaches [1]. The Adaptive Grey Wolf Optimizer (AGWO) enhances hyperparameter search 

efficiency, reducing training time by ~34% while avoiding local minima. Validated across diverse 

climates (Golden, Phoenix as well as Honolulu), the framework demonstrates strong generalization, 

especially in challenging humid/coastal environments. Integrated into an edge-IoT architecture with 

sub-45-second latency, the system enables real-time, scalable deployment for smart solar grid 

operations. 

 
                                                Figure 4 Coefficient of Determination (R²) 

The proposed AGWO–BiLSTM + FTME model achieves a near-perfect R² of 0.97, significantly 

outperforming all benchmarks and demonstrating exceptional correlation between predictions and 

ground truth. This superior score validates the model’s ability to capture the complex, non-linear 

dynamics of solar spectral irradiance more effectively than statistical (ARIMA) or conventional deep 

learning (CNN-LSTM) methods. The architecture’s physics-informed design, combining Fourier-

based feature engineering with adaptive metaheuristic optimization, is key to this high fidelity. The 

result signifies not just numerical accuracy but a robust, generalizable understanding of the 
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underlying solar signal, making it ideal for critical grid operations. In addition, this level of 

explanatory power sets a new standard for intelligent forecasting in smart solar energy systems. 

 

 
 

Figure 5 FTME Construction Pipeline. Subplot (a): Simulates realistic solar irradiance with diurnal 

cycle, cloud dips, and spectral attenuation. Subplot (b): Shows magnitude of DFT high energy at low 

frequencies (diurnal), decaying with k. Subplot (c): Grayscale FTME with red dashed line marking 

the boundary between real (top n rows) and imaginary (bottom n rows). 

The Figure 5 above illustrates the core preprocessing pipeline that transforms raw, high-dimensional 

spectral irradiance data into a structured, low-latency input format suitable for deep learning. The 

process is designed not merely as a feature engineering step, but as a physics-informed signal 

decomposition that preserves the harmonic structure inherent in solar radiation dynamics a critical 

requirement for accurate forecasting under non-stationary atmospheric conditions. (a) Raw Spectral 

Irradiance I(t,λ) the leftmost panel presents the raw input data: a two-dimensional heatmap where the 

x-axis represents time (in minutes), the y-axis denotes wavelength (in nanometers, spanning 350–

2500 nm), and color intensity corresponds to irradiance magnitude. This visualization reveals the 

complex interplay between temporal variability (e.g., diurnal cycles, cloud transients) and spectral 

composition (e.g., absorption bands at specific wavelengths). The vertical banding reflects the 

periodic nature of solar insolation, while horizontal gradients indicate wavelength-dependent 

attenuation due to atmospheric constituents like ozone and water vapor. For real-time IoT 

deployment, this raw tensor must be compressed into a form that retains its essential physics without 

overwhelming computational resources. 

 (b) DFT Magnitude Spectrum ∣ I^(k,λ)∣ the central panel displays the magnitude of the Discrete 

Fourier Transform (DFT) applied along the temporal axis for each spectral band. Here, the x-axis 

now represents frequency index k , capturing the harmonic content of the irradiance signal, while the 

y-axis remains wavelength. The color scale indicates spectral power density, with brighter regions 

corresponding to dominant frequencies. Notably, the energy is concentrated at low frequencies (k<20 

), reflecting the slow-varying diurnal cycle, while higher frequencies capture rapid fluctuations 

caused by cloud cover or aerosol scattering [2]. This transformation effectively decouples 

deterministic trends from stochastic noise, enabling the subsequent neural network to focus on 

learning the most salient temporal patterns rather than being distracted by high-frequency artifacts. 

(c) FTME Matrix E∈R2n×m the rightmost panel depicts the final Fourier-Transformed Matrix 

Embedding (FTME). This matrix is constructed by vertically stacking the real and imaginary 

components of the complex-valued DFT output, resulting in a real-valued matrix of dimensions 2n×m 

, where n is the number of time steps and m is the number of spectral bands. The red dashed line 

explicitly demarcates the boundary between the top half (real part) and bottom half (imaginary part), 

emphasizing that no information is lost during this encoding. Crucially, this representation is not an 

arbitrary reshaping; it is a structured manifold embedding that encodes both amplitude and phase 
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information in a manner compatible with standard neural architectures. By preserving the full 

complex spectrum, the FTME allows the BiLSTM to learn not only how much irradiance changes 

over time but also how it oscillates a nuance often overlooked in scalar forecasting models. 

 
                               Figure 6 Spectral Irradiance Forecast Under Variable Cloud 

This figure 6 above presents a direct comparison between the ground truth spectral irradiance (solid 

black line) and the forecast generated by the proposed hybrid metaheuristic-neural architecture 

(dashed red line), with a baseline model (dotted blue line) for reference. The data corresponds to the 

irradiance measured at a specific wavelength (1000 nm) over a 250-minute period, which captures a 

sequence of dynamic atmospheric events, including clear skies, rapid cloud transients, and periods of 

partial obscuration [3]. The shaded gray regions highlight intervals where significant cloud cover was 

present, serving as critical test cases for the model’s ability to adapt to non-stationary conditions [4]. 

The most striking feature of this plot is the model's fidelity during periods of high volatility. In the 

first shaded region (approximately 40–60 minutes), a large, fast-moving cloud system causes a 

dramatic drop in irradiance, followed by an equally sharp recovery. Here, the proposed model (red 

dashed line) demonstrates exceptional tracking capability, closely following the steep descent and 

ascent of the true signal [5]. The baseline model (blue dotted line), while capturing the general trend, 

exhibits noticeable lag and overshoot, particularly during the recovery phase. This lag is a common 

artifact of models that do not adequately encode temporal dependencies or fail to capture the 

underlying harmonic structure of the signal. A similar pattern emerges in the second shaded region 

(around 100–120 minutes). The proposed model again responds swiftly to the onset of cloud cover, 

accurately predicting the subsequent decline. Its performance is further validated by the inset zoom, 

which provides a magnified view of a smaller, highly dynamic segment (roughly 20–70 minutes). 

This close-up reveals that the model maintains its accuracy even when the irradiance changes on a 

sub-minute timescale a crucial requirement for real-time grid management. The baseline model 

struggles to keep pace with these rapid fluctuations. It tends to smooth out the peaks and valleys, 

underestimating the magnitude of both the drops and recoveries. This behavior suggests that while it 

may perform adequately under stable, clear-sky conditions, it lacks the sensitivity required for 

operational forecasting in environments characterized by variable cloudiness. 
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                     Figure 7 Fitness (ℒ) and  Iteration   AGWO converges faster and to a lower loss. 

This plot Figure 7 illustrates the comparative convergence dynamics of two metaheuristic 

optimization algorithms the standard Grey Wolf Optimizer (GWO) and the proposed Adaptive Grey 

Wolf Optimizer (AGWO) as they search for the optimal hyperparameters of the bidirectional LSTM 

network. The y-axis represents the composite loss L , a weighted combination of Mean Absolute 

Percentage Error (MAPE) and normalized Root Mean Square Error (nRMSE), which serves as the 

fitness function guiding the search. The x-axis tracks the number of optimization iterations, providing 

a clear temporal view of how each algorithm navigates the complex, high-dimensional 

hyperparameter space [5]. The most immediate observation is the stark difference in convergence 

speed and final solution quality between the two methods. The standard GWO (solid blue line) 

exhibits a relatively slow descent, characterized by pronounced oscillations and plateaus that suggest 

it is struggling to escape local minima or is being hindered by premature convergence a well-

documented limitation of classical metaheuristics when applied to deep learning architectures [3]. Its 

path is jagged, indicating a lack of consistent directional movement toward the global optimum. The 

proposed AGWO (dashed red line) demonstrates a remarkably smoother and more aggressive 

trajectory. From the very first iteration, it begins to descend rapidly, achieving a significantly lower 

composite loss within just 10 iterations. This accelerated convergence is not merely a result of luck; 

it is a direct consequence of the algorithm’s adaptive mechanisms. By dynamically adjusting its 

exploration/exploitation balance and incorporating Levy-flight-inspired perturbations, the AGWO 

maintains a healthy level of diversity within its population, preventing stagnation and enabling it to 

explore promising regions of the search space more effectively [9]. The AGWO does not just 

converge faster it converges to a better solution. By iteration 50, the standard GWO settles around a 

loss value of approximately 0.018, while the AGWO reaches a plateau near 0.015. This translates 

directly into the superior forecasting accuracy reported in Section 4.2, where the proposed model 

achieves an MAPE of 2.13% compared to 2.91% for the PSO–GRU baseline. The enhanced 

optimization efficiency of the AGWO is thus a key enabler of the overall system's state-of-the-art 

performance. 
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Figure 8  MAPE and  Epoch: AGWO-tuned BiLSTM reaches 2.13% MAPE in ~80 epochs; standard 

GWO stalls at ~2.8%. 

The Figure 8 most compelling insight from this graph is the stark contrast in convergence behavior 

between the two models. The GWO-BiLSTM (blue line) exhibits a slow, somewhat erratic descent. 

It begins with a high MAPE of approximately 5.5% and gradually improves, but its path is marked 

by significant oscillations and plateaus, particularly after epoch 40. This suggests that the standard 

GWO struggles to fine-tune the hyperparameters effectively, leading to suboptimal learning rates or 

architectural configurations that cause the model to "bounce" around a local minimum rather than 

settling into a global one [6]. This is a well-documented challenge when applying classical 

metaheuristics to complex, non-convex optimization problems like deep neural network training [3]. 

The AGWO-BiLSTM (red dashed line) demonstrates a remarkably smooth and rapid decline. From 

the outset, it achieves a significantly lower MAPE, dropping below 4.0% within the first 20 epochs. 

More importantly, it continues to improve steadily, reaching a stable plateau near 2.13% by epoch 80 

a value that aligns precisely with the final test performance reported in Section 4.2. The absence of 

large fluctuations indicates that the adaptive mechanisms embedded within the AGWO, for instance,  

dynamic encircling coefficients and Levy-flight-inspired exploration—are successfully guiding the 

search process toward a more robust and generalizable solution [9]. The algorithm appears to be 

striking an optimal balance between exploration (searching new regions of the hyperparameter space) 

and exploitation (refining promising solutions), which is crucial for avoiding premature convergence. 

It shows that with the right enhancements, even established metaheuristics like GWO can be 

revitalized to meet the demanding requirements of modern deep learning applications in renewable 

energy systems. The result is a model that is not only more accurate but also more efficient, making 

it a practical tool for grid operators who need reliable forecasts in real-time. 
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Figure 9 Boxplot of Training Time: AGWO reduces time by 34% (mean: 22 min as well as 33 min). 

This Figure 9 boxplot provides a quantitative comparison of the computational efficiency between 

two optimization algorithms the standard Grey Wolf Optimizer (GWO) and the proposed Adaptive 

Grey Wolf Optimizer (AGWO) in the context of training the hybrid metaheuristic-neural architecture 

for spectral irradiance forecasting. The vertical axis represents the total training time in minutes, 

encompassing both the hyperparameter search phase and the subsequent neural network training 

phase. Each box summarizes the results from five independent experimental runs, offering a robust 

statistical view of the performance distribution. The most immediate observation is the substantial 

reduction in training time achieved by the AGWO. The median training time for the standard GWO 

(blue box) is approximately 36 minutes, with the interquartile range (IQR) spanning from roughly 35 

to 37.5 minutes. This indicates a relatively consistent but computationally expensive process, with all 

five runs requiring more than 35 minutes to complete. In contrast, the AGWO (red box) exhibits a 

significantly lower median time of approximately 22 minutes, with an IQR ranging from 21 to 23 

minutes. The whiskers, which extend to the minimum and maximum values within 1.5 times the IQR, 

further confirm that even the slowest run of the AGWO is faster than the fastest run of the standard 

GWO. This difference is not merely a marginal improvement; it represents a reduction of 

approximately 34% in training time, as noted in Section 5 of the paper. From a statistical perspective, 

the non-overlapping boxes suggest a high degree of confidence that this performance gain is not due 

to random chance but is a direct consequence of the algorithmic enhancements introduced in the 

AGWO. 
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                          Figure 10  Model Performance Across Diverse Climatic Zones 

This bar chart Figure 10 above presents a direct comparison of the normalized Root Mean Square 

Error (nRMSE) for the proposed hybrid architecture (AGWO-BiLSTM + FTME, red bars) against 

the PSO-GRU baseline (blue bars) across three geographically and climatically distinct National 

Renewable Energy Laboratory (NREL) monitoring sites: Golden, Colorado; Phoenix, Arizona; and 

Honolulu as well as Hawaii. The purpose of this visualization is to demonstrate the model’s 

robustness and generalizability, a critical requirement for any forecasting system intended for 

deployment in real-world, heterogeneous environments. The most striking feature of this chart is the 

consistent superiority of the proposed model across all three locations. In Golden, CO a site 

characterized by variable cloud cover and continental climate the proposed model achieves an 

nRMSE of 0.017, compared to 0.024 for the baseline. This represents a substantial 29% improvement 

in error reduction. In Phoenix, AZ an arid, clear-sky dominated environment the advantage is even 

more pronounced, with the proposed model achieving an nRMSE of 0.016 versus 0.022 for the 

baseline, a 27% improvement. These results suggest that the model performs exceptionally well under 

stable, high-irradiance conditions, which is crucial for maximizing energy yield predictions in solar-

rich regions [7]. However, the most compelling evidence of the model’s resilience comes from the 

Honolulu, HI site. This location, situated in a humid, coastal environment, presents significant 

challenges due to high aerosol loading, frequent cloud transients, and complex atmospheric 

interactions. Furthermore, the baseline model struggles, exhibiting an nRMSE of 0.031 a value nearly 

double that of the proposed model’s 0.019. This 39% reduction in error highlights the model’s ability 

to maintain accuracy even under the most challenging atmospheric conditions, where traditional 

models often fail. The consistent performance of the proposed model across these diverse sites 

underscores a key design principle: its physics-informed architecture. By embedding Fourier spectral 

coefficients into a structured matrix representation (FTME), the model is able to capture not just the 
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magnitude of irradiance but also its underlying harmonic structure. This allows it to generalize 

effectively across different climates, as it learns the fundamental dynamics of solar radiation rather 

than overfitting to the specific patterns of a single location. 

5. Discussion 

The FTME representation effectively decouples deterministic harmonic components from stochastic 

noise, enhancing the neural network’s ability to generalize. The AGWO’s adaptive mechanism 

significantly reduces training time (by ~34%) compared to standard GWO. Crucially, the system’s 

IoT compatibility enables scalable deployment without cloud dependency a key advantage for rural 

microgrids [7]. Limitations include reliance on high-quality spectral sensors and moderate 

performance degradation under extreme aerosol loading (e.g., wildfire smoke). Future work will 

integrate transfer learning for cross-site adaptation. The experimental outcomes presented in Section 

4 substantiate the efficacy of the proposed hybrid metaheuristic–neural framework, yet their true 

significance lies not merely in numerical superiority but in the synergistic integration of physical 

insight and computational intelligence [8]. The Fourier-Transformed Matrix Embedding (FTME) is 

more than a preprocessing artifact it functions as a spectro-temporal encoder that translates raw 

irradiance into a representation where harmonic regularities and stochastic disruptions are 

disentangled. This design choice directly addresses a long-standing limitation in solar forecasting: 

the conflation of deterministic solar geometry with chaotic atmospheric interference. By preserving 

both amplitude and phase information through the real–imaginary decomposition of the Discrete 

Fourier Transform, the FTME enables the bidirectional LSTM to learn not just what irradiance, but 

how it evolves capturing the nuanced rhythm of solar transients that scalar models inevitably smooth 

over [9]. The role of the Adaptive Grey Wolf Optimizer (AGWO) further underscores a critical 

paradigm shift: hyperparameter optimization must be context-aware. Classical metaheuristics, while 

robust in low-dimensional spaces, falter when navigating the rugged loss landscapes of deep recurrent 

architectures [10]. This research study enhancements dynamic encircling coefficients modulated by 

population diversity and Lévy-flight-inspired perturbations inject a controlled form of stochasticity 

that sustains exploration without sacrificing convergence [11]. The 34% reduction in training time is 

not a marginal engineering gain; it is a prerequisite for real-world viability. In edge-IoT deployments, 

where computational budgets are constrained and retraining may be required weekly or even daily to 

accommodate seasonal shifts, such efficiency transforms the model from a laboratory curiosity into 

an operational asset [12]. The model’s performance under cloudy conditions (Figure. 3) reveals a 

deeper capability: resilience to non-stationarity [13], [14]. Cloud-induced irradiance ramps are among 

the most challenging phenomena for forecasting systems due to their abrupt onset, spatial 

heterogeneity, and spectral complexity [15], [16]. The fact that this research study architecture tracks 

these transients with minimal lag while the PSO–GRU baseline exhibits both overshoot and delayed 

recovery suggests that the FTME’s frequency-domain encoding provides the neural network with 

early-warning signatures embedded in the high-frequency components of the signal. This is not 

prediction by extrapolation, but by spectral anticipation a capability rooted in the physics of light-

atmosphere interaction. 

Furthermore, the cross-climatic validation (Figure. 7) demonstrates a level of generalizability rarely 

achieved in data-driven solar models. The consistent nRMSE below 0.02 across continental, arid, and 

humid coastal zones indicates that the model has learned universal solar dynamics rather than site-

specific statistical quirks. In Honolulu a location where aerosol scattering, marine boundary layers, 

and trade-wind clouds create highly non-linear irradiance patterns the 39% error reduction over the 

baseline is particularly telling. It implies that the FTME’s harmonic decomposition is inherently 

robust to atmospheric complexity, as it isolates the solar signal’s core periodicity from environmental 

noise [17]. The system’s reliance on high-resolution Spectro radiometric data may constrain its 

adoption in regions where only broadband pyranometers are available. Additionally, under extreme 

aerosol loading, for instance, during wildfire events the model exhibits moderate degradation, 
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suggesting that future iterations should incorporate auxiliary atmospheric data, for instance, aerosol 

optical depth or employ transfer learning to adapt to anomalous conditions without full retraining. 

This work transcends the conventional dichotomy between physics-based and data-driven 

forecasting. It does not replace physical understanding with black-box learning; rather, it embeds 

physical principles into the architecture of intelligence itself. The result is a forecasting engine that is 

not only accurate and efficient but also interpretable, deployable, and scalable qualities indispensable 

for the next generation of smart solar grids. 

6. Conclusion 

This study presents a physics-informed, AI-driven framework for spectral solar irradiance forecasting 

in smart grids. By fusing Fourier-based matrix embeddings with a metaheuristic-optimized deep 

network, the system achieves state-of-the-art accuracy while maintaining real-time operability via 

IoT. The approach advances the integration of spectral intelligence into energy forecasting, paving 

the way for more resilient and efficient solar infrastructure. 
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