Comprehensive Journal of Science

Volume (9), Issue (36), (Sept 2025) ISSN: 3014-6266

مجلة العلوم الشاملة المجلد(9) العدد (36) (سبتمبر 2025) ردمد: 3014-6266

تأثير حمض الهيوميك ومستخلص الطحالب البحرية على النمو الخضري وجودة الشعير محفوظ عبدالحفيظ عبدالرازق

اسم المؤسسة ، كلية الموارد الطبيعية وعلوم البيئة جامعة درنة – ليبيا اسم المؤسسة ، كلية الموارد الطبيعية وعلوم البيئة جامعة درنة- ليبيا

تاريخ الاستلام: 2025/8/16 -تاريخ المراجعة: 9/25/9/14 - تاريخ القبول: 2025/9/18 - تاريخ للنشر: 2025/9/25 - تاريخ النشر: 2025/9/25

الملخص:

أجربت التجربة الحقلية في مدينة شحات - الجبل الأخضر - ليبيا خلال الموسم الشتوي 2023-2024 لدراسة تأثير حمض الهيوميك ومستخلص الطحالب البحرية على النمو الخضري وجودة الشعير (Hordeum vulgare, L.) صنف "جيزة 129 . "تصميم التجرية كان القطع المنشقة مرة واحدة بثلاث مكررات. تم ترتيب أربعة معدلات حمض الهيوميك (الكنترول، 50، 100، 150 كجم/هكتار) في القطع الرئيسية وأربعة تركيزات من مستخلص الأعشاب البحرية (الكنترول، 4، 8 و 12 مل/ لتر) تم ترتيبها في القطع تحت الرئيسية وتحتوي كل مكررة على 8 معاملات. الصفات المدروسة هي النمو الخضري) ارتفاع النبات، الكلوروفيل الكلي(SPAD) ، مساحة الورقة (سم2) وجودة المحصول (عدد السنابل / م2، عدد السنابل/ سنبلة، وزن 1000 حبة، محصول الحبوب (طن/ هكتار)، المحصول البيولوجي (طن/ هكتار)، ودليل الحصاد (%) ومحتوى البروتين (%). أوضحت النتائج أن زيادة معدل حامض الهيوميك حتى 150 كجم/هكتار أدى إلى زبادة معنوبة في جميع صفات النمو الخضري المدروسة (ارتفاع النبات، الكلوروفيل الكلي والمساحة الورقية) وجودة المحصول (عدد السنابل/م2، عدد السنابل/سنبلة، وزن 1000 حبة ومحصول الحبوب (طن/هكتار) والمحصول البيولوجي (طن/ هكتار) ودليل الحصاد (%) ومحتوى البروتين (%)، مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لهذه الصفات. من ناحية أخرى، سجل مستخلص الأعشاب البحرية حتى 12 مل/لتر أعلى القيم لجميع النمو الخضري الذي تمت دراستها (ارتفاع النبات، الكلوروفيل الكلى والمساحة الورقية)، وجودة المحصول (عدد السنابل/م2، عدد السنيبلات/سنبلة، وزن 1000 حبة ومحصول الحبوب (طن/ هكتار) والمحصول البيولوجي (طن/ هكتار) ودليل الحصاد (%) ومحتوى البروتين (%)، مقارنة بمعاملة الكنترول التي سجلت أقل قيم لهذه الصفات. التفاعل بين حمض الهيوميك ومستخلص الطحالب البحرية على النمو الخضري وجودة الشعير (Hordeum vulgare, L.) صنف "جيزة 129" كان عالى المعنوبة في جميع صفات النمو الخضري وجودة المحصول التي تمت دراستها في هذه الدراسة.

الكلمات المفتاحية: الشعير - حمض الهيوميك- مستخلص الأعشاب البحرية- النمو الخضري- المحصول وجودة المحصول

Abstract:

The study aimed to explore the role of transparency and accountability in reducing administrative corruption through the following key aspects: identifying the impact of administrative transparency on limiting corruption practices within public institutions; examining the role of accountability mechanisms in enhancing administrative efficiency and combating corruption; understanding the complementary relationship between transparency and accountability in building an ethical administrative environment; and identifying the main challenges hindering the implementation of transparency and accountability in administrative institutions, particularly in Arab contexts. The researcher adopted the descriptive methodology due to its suitability for the study's objectives. The study reached the following conclusions:

•Weak legal and regulatory frameworks limit the implementation of transparency and accountability principles, creating opportunities for the spread of corruption within administrative institutions.

- •The absence of an institutional culture that supports transparency and accountability contributes to the concealment of errors and corruption, and undermines employees' ability to report misconduct.
- •The lack of independence and capacity of oversight and supervisory bodies reduces their effectiveness in detecting violations and holding officials accountable, negatively affecting public trust in the administrative system.
- •Weak societal awareness and limited public participation in oversight reduce the societal pressure needed to promote transparency and accountability, leaving institutions vulnerable to mismanagement and corruption.

Keywords: Transparency and Accountability – Administrative Corruption

1. المقدمة.:

ينتمي الشعير (.Hajiboland et al., 2019, FAOSTAT, 2019) إلى العائلة النجيلية (في الماضي Graminae) (حاليا Hajiboland et al., 2019, FAOSTAT, 2019). الشعير هو الحبوب الغذائية شيوعًا في العالم بعد القمح والذرة والأرز (Poaceae). الشعير بشكل كبير العديد أحد الحبوب الأكثر استخدامًا على نطاق واسع، ويزرع في جميع أنحاء العالم. بالإضافة إلى ذلك، يتحمل الشعير بشكل كبير العديد من التحديات غير الحيوية، بما في ذلك ندرة المياه والملح ودرجات الحرارة المرتفعة التي تؤثر سلبًا على إنتاج المحاصيل (Ebrahimi et al., 2021, Amiri et al., 2022) تشتهر دول الشرق الأوسط بشتائها الرطب المعتدل وصيفها الحار الجاف، حيث يختلف إنتاج الشعير من سنة إلى أخرى اعتمادًا على هطول الأمطار السنوي (~ 30-100 ملم في الصحراء السهول الدوس من منطقة إلى أخرى اعتمادًا على مارس) والذي يختلف من منطقة إلى أخرى and Kadioglu, 2008) مم في المرتفعات)، وتوزيعه خلال موسم النمو (أكتوبر إلى مارس) والذي يختلف من منطقة إلى أخرى Al-Karablieh and Jabarin, 2010).

ويستخدم في الغذاء في بعض الدول مثل ليبيا وفي صناعة الأعلاف والشعير. ويعتبر الشعير من أهم المحاصيل الشتوية في معظم أنواع التربة الليبية. وتبلغ المساحة العالمية 47.9 مليون هكتار بمتوسط أنتاجية حوالي 2.9 طن/هكتار، أما المساحة المزروعة بهذا المحصول في ليبيا فقد بلغت 136247 هكتارا بمتوسط 0.5 طن/هكتار (FAO, 2019). وبالإضافة إلى ذلك، فهو خامس أكثر محاصيل الحبوب إنتاجية في العالم. كما أنه واحد من محاصيل الحبوب الأكثر قدرة على التكيف، حيث تتمتع بقدرة متنوعة على التكيف مع الظروف المناخية الزراعية المختلفة وخصائص التربة المتنوعة (2019). ومن الأمور التي تزيد من أهمية الشعير الكبيرة هو قدرته على النمو والإنتاج في العديد من البيئات الهامشية التي لا تصلح لإنتاج محاصيل الحبوب الأخرى مثل القمح والتي تتميز غالبا بانخفاض درجات الحرارة والجفاف والملوحة (2003).

يعد الشعير أحد محاصيل الحبوب القديمة في العالم، خاصة في منطقة البحر الأبيض المتوسط .FAOSTAT 2021 ويزرع على نطاق واسع .2021 ويزرع على نطاق واسع المرتبة الرابعة من حيث المساحة والإنتاج بعد القمح والذرة والأرز (Jarošová et al., 2016 ويزرع على نطاق واسع في المناطق الجافة وشبه الجافة (Moustafa et al., 2021). علاوة على ذلك، يمكن أن تنمو في بيئات هامشية غير مناسبة للحبوب الأخرى (Moustafa et al., 2021). تستخدم حبوب الشعير في أغذية الإنسان وعلف الماشية وفي عملية التخمير يمكن تحقيق زيادة إنتاجية الشعير من خلال زراعة أصناف عالية الإنتاجية وتنفيذ الممارسات الثقافية الموصى بها وخاصة التسميد (Wali et al., 2018).

فهو يوفر للحيوانات الطعام والشراب وكذلك للإنسان (Jing et al., 2022). يعتبر الشعير مصدراً جيداً للعديد من العناصر الغذائية، بما في ذلك البروتين 9.9 جم ذو القيمة الغذائية العالية، والألياف والسيلينيوم والمعادن وفيتامينات ب 9.9 جم ذو القيمة الغذائية العالية، والألياف والسيلينيوم والمعادن وفيتامينات والكربوهيدرات والألياف والفيتامينات (Siebenhandl et al., 2007). في العقد الماضي، ساهم الاهتمام المتزايد بالأطعمة ذات القيمة الغذائية الأعلى في تكثيف الأبحاث حول المركبات النشطة بيولوجيًا البسيطة المتراكمة في حبوب الشعير (Beleggia et al., 2021). تتفوق حبوب الشعير على الحبوب الأخرى بسبب قيمتها الغذائية العالية وينتج بشكل رئيسي من المحتوى العالى من الألياف ومضادات

الأكسدة، مثل المركبات الفينولية، يمكن أن تكون حبوب الشعير أيضًا مصدرًا مهمًا للأحماض الدهنية غير المشبعة والكاروتينات المفيدة للصحة (Nowak et al., 2023).

ومن بين المواد الكيميائية الحيوية التي جذبت انتباه العلماء، على سبيل المثال، الكاروتينات، أو البوليفينول، أو الأحماض الدهنية الحرة. في عائلة Poaceae، تلعب الصبغات النباتية مثل الكاروتينات والبوليفينول دورًا رئيسيًا. ولا تتوافق هذه المواد الكيميائية مع لون النباتات فحسب، بل الأهم من ذلك أنها تتمتع بخصائص تعزز الصحة. يعد الشعير أيضًا مصدرًا للدهون، والتي تشمل الأحماض الدهنية، مثل المشبعة، والأحادية غير المشبعة، والأحماض الدهنية المتعددة غير المشبعة (Guo et al.,).

2020 تتراوح القيمة الإجمالية للدهون في الحبوب بأشكالها المختلفة بين 3-4% (Geng et al., 2022).

نظرًا لأهمية نبات الشعير، فمن الضروري تعزيز نموه وإنتاج البذور. تم استخدام منظمات نمو النبات مثل حمض الهيوميك للتأثير على نمو النبات. حمض الهيوميك (HA)، هو أحد الأسمدة المعدنية العضوية الأكثر استخدامًا، وقد ثبت أن نمو النبات وإنتاجيته يستفيد من HA عن طريق تنظيم امتصاص الماء والمغذيات، والتمثيل الضوئي، وتخليق البروتين، وتنفس الخلايا، ونشاط الإنزيم (Dawood et al., 2019). الإنزيم (Ekin, 2019).

يتمتع حمض الهيوميك كمادة عضوية بالعديد من المزايا بما في ذلك الأنشطة الشبيهة بالهرمونات النباتية التي تؤثر على عمليات فسيولوجيا النبات مثل تعزيز إنبات البذور وزيادة نمو نظام الجذر ونمو البادرات وتحسين عملية التمثيل الضوئي وبالتالي النباتية، مما يعزز التتمية ويزيد النمو الخضري (Fahmi et al., 2020). كما يعمل حمض الهيوميك على تسريع انقسام الخلايا النباتية، مما يعزز التتمية ويزيد من تنفس الجذور وترتيبها (Bijanzadeh and Perssarakli, 2020).

الأحماض الدبالية تحفز نمو النبات والإنتاج من خلال العمل على الآليات المشاركة في تنفس الخلايا، والتمثيل الضوئي، وتخليق الأحماض الدبالية تحفز نمو النبات والإنتاج من خلال العمل على الآليات المشاركة في تنفس الخلايا، والتمثيل الضوئي، وتخليق البروتين، وامتصاص الماء والمغذيات، وأنشطة الإنزيمات (Dinçsoy and Sönmez 2019, Ramadan et al., 2023). نظرًا لقدرتها على تحفيز المحتوى الغذائي والفينولات والفلافونويدات ونشاط مضادات الأكسدة في أوراق النباتات، فهي تحلل المركبات التي تعتبر مضادات أكسدة طبيعية (Bayat et al., 2021). من المعروف أن الزيادة في تراكم أيونات الصوديوم والكلوريد في أنسجة النبات ترتبط بالإجهاد الملحي، مما يسبب اضطراب التوازن الأيوني، مع الاضطرابات الفسيولوجية، وانخفاض امتصاص البوتاسيوم (Ketehouli et al., 2019). الأحماض الدبالية هي جزيئات عضوية تلعب أدوارًا أساسية في تحسين خصائص التربة ونمو النبات والمعايير الزراعية. تشمل مصادر HA الفحم والليغنيت والتربة والمواد العضوية. تم استخدام المنتجات القائمة على حمض الدبالية في إنتاج المحاصيل في السنوات الأخيرة لضمان استدامة الإنتاج الزراعي (Ampong et al., 2022).

تلعب الأحماض الدبالية عدة أدوار مهمة مثل: زيادة الأنشطة الفيزيائية والكيميائية الحيوية للتربة من خلال تحسين البنية والملمس والقدرة على الاحتفاظ بالمياه والتجمعات الميكروبية (Fuentes et al., 2018; Nardi et al., 2021)، وزيادة مغذيات التربة. التوافر، وخاصة المغذيات الدقيقة عن طريق خلب المغذيات الدقيقة ونقلها بشكل مشترك إلى النباتات؛ تقليل نقل المعادن الثقيلة السامة عن طريق ترسيبها، وبالتالي تقليل تناول النباتات للمعادن الثقيلة السامة (كرسيبها، وبالتالي تقليل تناول النباتات المعادن الثقيلة السامة الأوكسين والسيتوكينين، والميتوكينين، والميتوكينين، والميتوكينين، والميتوكينين، والتي تساعد في مقاومة الإجهاد، واستقلاب العناصر الغذائية، والتمثيل الضوئي Canellas et al., 2020, Laskosky et .al., 2020, Van Tol de Castro et al., 2021)

يعد حمض الهيوميك (HA) أحد أهم مكونات المنشطات الحيوية والأسمدة الحيوية , (HA) أحد أهم مكونات المنشطات الحيوية والأسمدة الحيوية (Gürsoy 2022b). على الرغم من أن المواد الدبالية تساهم بشكل كبير في خصوبة التربة من خلال التأثير على الخصائص الفيزيائية والكيميائية والكيميائية والبيولوجية للتربة، إلا أن لها تأثير إيجابي على تغذية جذور النباتات بسبب التأثير المنشط

الحيوي للمواد الدبالية (Du Jardin 2015). يُعتقد أن HA يلعب دورًا مهمًا في تنظيم نمو النبات كمنشط حيوي (Du Jardin 2015). حمض الهيوميك هو أحد مكونات المواد الدبالية المشتقة من بقايا المادة البيولوجية التي تتمثل في التربة (Shukry et al., 2023).

التسميد الورقي هو ممارسة مستخدمة على نطاق واسع لتصحيح النقص الغذائي في النباتات الناجم عن الإمداد غير المناسب بالعناصر الغذائية إلى الجذور. تتمثل الفوائد الرئيسية للرش الورقي في أنه يمكن أن يصل معدل كفاءة الامتصاص إلى 90% مقابل كفاءة 10% من تطبيقات التربة. كما أنها تصبح متاحة على الفور في النبات لأنها قابلة للذوبان في الماء بنسبة 100%. وهذا يجعلها مثالية لتصحيح نقص العناصر الغذائية. والشيء الرائع الآخر هو أن الرش الورقي يحفز النباتات على تكوين إفرازات في الجذور والتي تثير الميكروبات للعمل بجدية أكبر وبالتالي تزيد من امتصاص العناصر الغذائية من التربة. تعتبر الرشات الورقية مكملاً رائعًا لتعزيز النكهات والحلاوة الكثافة المعدنية وإنتاجية المحاصيل (Hsu, 1986).

مستخلص الأعشاب البحرية هو منشط حيوي تم استخدامه كتعديل للتربة لتطوير آليات نمو النبات بعتبر تطبيق SW ولا البحرية (SW) أحد التطبيقات الجديدة التي تتم دراستها بشكل مكثف اليوم. يعتبر تطبيق (SW) منظمًا طبيعيًا وفعالًا في زيادة نمو النبات وإنتاجيته ضد العوامل البيئية المختلفة (Chanthini et al., 2022). تلعب إدارة النفايات، وهي ممارسة مستدامة وصديقة للبيئة، دورًا مهمًا في الحد من المشكلات البيئية وزيادة إنتاجية المنتج (al., 2022). يحتوي مستخلص الأعشاب البحرية كمنشط حيوي على مغنيات كبيرة وصغرى وفيتامينات وأحماض دهنية وأمينية وهرمونات تنظم النمو مثل الأوكسين والسيتوكينين والجبرلينات (Issa et al., 2019). وأفاد (2019) ألم البحرية قابلة للتحلل بيولوجيًا وغير ملوثة وغير سامة للبيئة. الأعشاب البحرية البنية كمصدر للأوكسينات (Salvi et al., 2019 and El-Sheikh et al., 2020).

نظرًا لاحتواء مستخلصات الطحالب على عناصر غذائية مثل النيتروجين والفوسفور والبوتاسيوم والكالسيوم والماغنسيوم والكبريت بالإضافة إلى الزنك والحديد والمنجنيز والنحاس والموليبديوم والكوبلت وبعض منظمات النمو والبوليامينات والفيتامينات والميتوكينين والأوكسينات، حمض الأبسيسيك والفيتامينات والمواد المغذية، يمكن تطبيقها موضعياً لتحسين نمو الخضروات والسيتوكينين والأوكسينات، حمض الأبسيسيك والفيتامينات المستخلصات لها تأثير إيجابي على تطور النبات وإنبات البذور في كل مرحلة تسبق الحصاد وتشمله (Chojnacka and Kim, 2013). لقد ثبت أن المنتجات المصنوعة من الأعشاب البحرية تزيد من حجم الجذور وكثافتها، مما يزيد من معدلات الإنبات ويزيد بشكل كبير من قوة الشتلات (Rayorath et al., 2008). وفقًا Parađiković)، تساعد مستخلصات الأعشاب البحرية على تعزيز نمو النبات وانتاجيته وتحمله للتحديات الحيوية وغير الحيوية.

لذا يهدف هذا البحث إلى دراسة تأثير حمض الهيوميك ومستخلص الطحالب البحرية علي النمو الخضري والجودة لنبات الشعير صنف جيزة 129.

2.المواد وطرق البحث.:

أجريت التجربة الحقلية في مدينة شحات – الجبل الأخضر – ليبيا خلال الموسم الشتوي 2023–2024 لدراسة تأثير حمض الهيوميك ومستخلص الطحالب البحرية علي النمو الخضري وجودة الشعير (... Hordeum vulgare, L.) صنف "جيزة 129".أشتملت التجربة على ثماني معاملات مرتبة حسب تصميم القطع المنشقة مرة واحدة مع ثلاث مكررات لكل معاملة.

ويمكن تلخيص معاملات هذه التجرية على النحو التالى:

- أ) حمض الهيوميك (كجم/هكتار)
 - کنترول
 - 50 •
 - 100 •

150 •

ب) مستخلص الأعشاب البحرية (مل/ لتر)

- کنترول
 - 4 •
 - 8 •
 - 12 •

الصفات المدروسة

1)الصفات الخضربة

- ارتفاع النبات (سم).
- محتوى الكلوروفيل الكلي (SPAD) تم قياس محتوى الكلوروفيل في الصباح الباكر قبل منتصف النهار باستخدام جهاز قياس الكلوروفيل MC-100 من شركة Apogee Instruments, Inc، يوتا، الولايات المتحدة الأمريكية وتم التعبير عن البيانات كمتوسطات SPAD.
 - مساحة الورقة (سم 2) :تم حساب مساحة الورقة كما هو موضح L*W*C=

حيث L هو طول الورقة، W هو عرض الورقة، و C هو الثابت (0.75). تم حساب مؤشر مساحة الورقة (LAI) وفقًا للصيغ أدناه LAI = مساحة الورقة/ مساحة الأرض.

2) المحصول وجودة المحصول

- عدد السنابل/ م
- عدد السنبيلات/ سنبلة
 - وزن- 1000 حبة
- محصول الحبوب (طن/هكتار)
- المحصول البيولوجي (طن/هكتار)
- دليل الحصاد (%): تم حسابه على النحو التالي (محصول الحبوب ÷ المحصول البيولوجي) ×100 طبقاً Gawad et al. (1987)
 - محتوى البروتين (%): تم حسابه في الحبوب طبقا لـ (A.O.A.C. 1990)

التحليل الأحصائي:

تم إخضاع نتائج المعلمات المقاسة للتحليل الإحصائي المحوسب باستخدام البرنامج الإحصائي SAS الإصدار 9.0 وفقا لتحليل التباين (Snedecor and Cochran 1990)0.05 عند LSD عند ANOVA) وتمت مقارنة متوسطات المعاملات باستخدام

3. النتائج والمناقشة.:

1) الصفات الخضرية

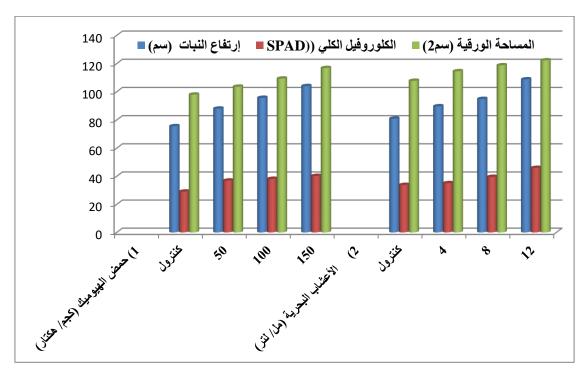
أظهرت النتائج الواردة في الجدول (1) والشكل (1) تأثير التسميد بحمض الهيوميك والرش بالأعشاب البحرية على صفات النمو الخضري (ارتفاع النبات والكلوروفيل الكلي والمساحة الورقية) لنبات الشعير صنف "جيزة 129". أظهرت النتائج أن زيادة مستويات التسميد بحمض الهيوميك أدت إلى زيادة معنوية في صفات النمو الخضري المدروسة حيث سجل التسميد بحمض الهيوميك بمعدل (150 كجم/ هكتار) أعلى القيم لارتفاع النبات (103.99 سم) والكلوروفيل الكلي (150 كجم/ هكتار) أعلى القيم لارتفاع النبات (103.99 سم) والكلوروفيل الكلي (100 كجم/ هكتار)

(SPAD 29.10) مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لارتفاع النبات (75.55سم) ، الكلوروفيل الكلي (SPAD 29.10) والمساحة الورقية (97.96 سم 2)، على التوالي.

من ناحية أخرى أوضحت النتائج تأثير مستخلص الطحالب البحرية علي صفات النمو الخضري (ارتفاع النبات والكلوروفيل الكلي والمساحة الورقية لنبات الشعير صنف "جيزة 129". أوضحت النتائج أن زيادة مستويات الرش بمستخلص الطحالب البحرية تؤدي إلى زيادة صفات النمو الخضري المدروسة حيث سجل الرش بمستخلص الطحالب البحرية بمعدل (12مل/ لتر) أعلى قيم لارتفاع النبات (108.78 سم) والكلوروفيل الكلي (SPAD 45.97) ودليل المساحة الورقية (122.25 سم²)، مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لارتفاع النبات (80.93 سم)، الكلوروفيل الكلي (SPAD 33.83) والمساحة الورقية (107.76سم²)، على التوالى.

التداخل بين التسميد بحمض الهيوميك والرش بالأعشاب البحرية علي صفات النمو الخضري (ارتفاع النبات والكلوروفيل الكلي والمساحة الورقية) لنبات الشعير صنف "جيزة 129" كان عالى المعنوبة.

التأثيرات المفيدة لحمض الهيوميك على نمو النبات يمكن أن يعزى إلى زيادة غشاء الخلية وامتصاص الأكسجين والتنفس والتمثيل الضوئي، وامتصاص العناصر الغذائية، واستطالة الجذور والخلية والنقل الأيوني (Nardi et al., 2002).


وجد نتائج مماثلة بواسطة (Rathore et al. (2009) في فول الصويا، حيث أن الرش الورقي لمستخلص الأعشاب البحرية بنسبة 15% يمكن أن يؤدي إلى تعزيز مؤشر مساحة الورقة، وكفاءة الثغور، وتحسين الإنتاجية. يحتوى مستخلص الطحالب البحرية على العناصر الكبرى والصغرى ومنظمات نمو النبات مما يساهم في زيادة نمو النبات بشكل عام مما ينعكس على زيادة ارتفاع النبات، ويزداد ارتفاع النبات مع زيادة تراكيز الرش بمستخلص الطحالب البحرية وهذه النتيجة مماثلة لما وجده (Mohammad, 2013). العناصر الموجودة في مستخلص الطحالب البحرية لها دور في نشاط العديد من الإنزيمات المهمة، وخاصة الإنزيمات المسؤولة عن تكوين وبناء جزيء الكلوروفيل، مما ساهم في زيادة محتوى الأوراق من الكلوروفيل ، وهذا متفق عليه بما وصل إليه (Kasim et al., 2015).

دور المستخلصات البحرية في زيادة نشاط العديد من الإنزيمات المشاركة في عمليات التطور بالإضافة إلى دورها في زيادة عملية التمثيل الضوئي مما يساهم في زيادة وتحسين نموها مما يؤدي إلى زيادة مساحة ورقة العلم (Shahbazi et al., 2015).

نظرًا لاحتواء مستخلصات الطحالب على عناصر غذائية مثل N و P و N و Mg و Ca و بالإضافة إلى Zn و Mn و Cu و بعض منظمات النمو والبوليامينات والفيتامينات والسيتوكينين والأوكسينات، حمض الأبسيسيك والفيتامينات والمواد المغذية، يمكن إضافتها لتحسين النمو الخضري (Chojnacka and Kim, 2013). وفقا ل Parađiković et al. وفقا ل (Chojnacka and Kim, 2013)، تساعد مستخلصات الأعشاب البحرية على تعزيز نمو النبات وإنتاجيته وتحمل التحديات الحيوية وغير الحيوية. يعتقد أن تأثير النمو المعزز هذا يرجع إلى المركبات العضوية المختلفة الموجودة في مستخلص الأعشاب البحرية. وبشكل أكثر تحديدًا، يُعتقد أن ذلك يرجع إلى وجود الهرمونات النباتية، وخاصة السيتوكينين في مستخلصات الأعشاب البحرية (,1980) التي والصغرى التي تحفز انقسام الخلية وتوسعها وليس أي منها. يؤدي إلى التوازن في العمليات الفسيولوجية والبيولوجية التي تؤثر على نمو الجذور وزيادة قدرتها على امتصاص الماء والعناصر الغذائية القابلة للذوبان فيه مما ينعكس إيجاباً على النمو (AL-Ubeidi et al.,

(Ashok Sorghum vulgare عند رشها بمستخلص الأعشاب البحرية. عزز نبات القمح عند رشها بمستخلص الأعشاب البحرية. عزز نبات المارجيناتوم بتركيز منخفض نمو الطحالب البنية Rosenvingea intricata، عند تطبيقه على (Sivasankari et al., 2006) عند تطبيقه على و Vigna sinensis و et al., 2004) حيث أظهر نبات المحاصيل نتائج أفضل في جميع جوانب النمو (Table (1): Effect of humic acid and seaweed extracts on vegetative growth of barley cv. Giza 129.

المساحة الورقية (سم ²)	الكلوروفيل الكل <i>ي</i> (SPAD)	إرتفاع النبات (سم)	المعاملات	
			1) حمض الهيوميك (كجم/ هكتار)	
97.96	29.10	75.55	كنترول	
103.56	36.95	88.03	50	
109.34	38.18	95.68	100	
116.82	40.24	103.99	150	
1.21	0.05	0.72	LSD _(0.05)	
			2) الأعشاب البحرية (مل/ لتر)	
107.76	33.83	80.93	كنترول	
114.53	35.10	89.67	4	
118.75	39.57	94.87	8	
122.25	45.97	108.78	12	
2.14	0.14	1.19	LSD _(0.05)	
**	**	**	التداخل (2×1)	

Fig. (1): Effect of humic acid and seaweed extracts on vegetative growth of barley cv. Giza 129.

2)المحصول والجودة

أظهرت النتائج الواردة في الجدول (2) والشكل (2) تأثير التسميد بحمض الهيوميك والرش بالأعشاب البحرية علي صفات المحصول والجودة (عدد السنابل/م²، عدد السنبليات/ سنبلة، وزن 1000 حبة (جم) ، محصول الحبوب (طن/ هكتار)، المحصول البيولوجي (طن / هكتار)، دليل الحصاد (%)،البروتين (%)) لنبات الشعير صنف "جيزة 129". أظهرت النتائج أن زيادة مستويات التسميد بحمض الهيوميك أدت إلى زيادة معنوية في صفات المحصول والجودة المدروسة حيث سجل التسميد بحمض الهيوميك بمعدل (150 كجم/ هكتار) أعلى القيم لعدد السنابل (280.33/ م²) ، عدد السنبليات/ سنبلة (47.39)، وزن 1000 حبة (

44.49)، محصول الحبوب (4.28 طن/ هكتار) ، المحصول البيولوجي (9.62 طن/ هكتار)، دليل الحصاد (44.49 %)،البروتين (9.20 %)، مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لعدد السنابل (230.50/ م 2) ، عدد السنبليات/ سنبلة (35.78)، وزن 1000 حبة (28.79جم)، محصول الحبوب (2.71 طن/ هكتار)، المحصول البيولوجي (6.65 طن/ هكتار)، دليل الحصاد (40.75 %)، البروتين (7.84 %)، على التوالى.

من ناحية أخرى أوضحت النتائج تأثير مستخلص الطحالب البحرية علي صفات المحصول والجودة (عدد السنابل/م²، عدد السنبليات/ سنبلة، وزن 1000 حبة (جم) ، محصول الحبوب (طن/ هكتار)، المحصول البيولوجي (طن / هكتار)، دليل الحصاد (%)،البروتين (%)) لنبات الشعير صنف "جيزة 129". أوضحت النتائج أن زيادة مستويات الرش بمستخلص الطحالب البحرية تؤدي إلى زيادة صفات المحصول والجودة المدروسة حيث سجل التسميد بحمض الهيوميك بمعدل (150 كجم/ هكتار) أعلى القيم لعدد السنابل (282.42/ م²) ، عدد السنبليات/ سنبلة (46.09)، وزن 1000 حبة (44.25)، محصول الحبوب (48.8 %)، مقارنة بمعاملة طن/ هكتار) ، المحصول البيولوجي (67.9 طن/ هكتار)، دليل الحصاد (49.90%)،البروتين (38.8 %)، مقارنة بمعاملة الكنترول التي سجلت أقل قيمة لعدد السنابل (233.32/ م²)، عدد السنبليات/ سنبلة (37.71)، وزن 1000 حبة (38.08 م)، البروتين (38.68 %)، البروتين (38.69 %)، على التوالي.

التداخل بين التسميد بحمض الهيوميك والرش بالأعشاب البحرية علي صفات المحصول والجودة (عدد السنابل/ 2 ، عدد السنبليات/ سنبلة، وزن 1000 حبة، محصول الحبوب ، المحصول البيولوجي ، دليل الحصاد، البروتين لنبات الشعير صنف "جيزة 2 129" كان عالى المعنوية.

يمكن أن يعزى تحسين محصول حبوب القمح وصفاته بسبب إضافة حمض الهيوميك إلى أن حمض الهيوميك يحفز (Akinremi et al., والتعميات الكيميائية الحيوية في النباتات بما في ذلك عملية التمثيل الضوئي ومحتوى الكلوروفيل الكلي وتشيط الإنزيمات وتخليق (2000. بالإضافة إلى ذلك، قد يعمل حمض الهيوميك على تحسين استيعاب العناصر الرئيسية والثانوية، وتنشيط الإنزيمات وتخليق البروتين وزيادة تراكم المادة الجافة مما يؤدي بالتالي إلى زيادة الإنتاج والجودة (Ulukan, 2008). وفي هذا الصدد،—El البروتين وزيادة تراكم المادة الجافة مما يؤدي بالتالي إلى زيادة الإنتاج والجودة (1000 حبة، ومحصول الحبوب والقش / فدان فدان ألم المحوظ بسبب إضافة حامض الهيوميك. بالإضافة إلى ذلك، سجل العديد من الباحثين تحسنًا ملحوظًا في محصول الحبوب وصفاته بسبب إضافة حمض الهيوميك (Radwan et al., 2015, Anwar et al., 2016). علاوة على ذلك، فإن النتائج التي تم الحصول عليها تتفق مع (2016) (Kandil et al. (2016) الخيوميك أدى إلى زيادة معنوية في عدد السنابل/م²، طول السنبلة، وزن الحبة/سنبلة، وزن 1000 حبة. علاوة على ذلك، (2016) (2016) المحصول وصفات المحصول للقمح تم الحصول عليها عن طريق إضافة حامض الهيوميك مقارنة بمعاملة الكنترول.

ويمكن تفسير هذه النتائج من خلال حقيقة أن مستخلصات الأعشاب البحرية التي تحتوي على نسبة عالية من المغنيسيوم والمعادن تميل إلى زيادة تركيز الكلوروفيل والكاروتينات في الأوراق (Mohy El-Din 2015). ونتيجة لذلك، تحسنت قدرة وكفاءة عملية التمثيل الضوئي، وكذلك توافر العناصر الغذائية وامتصاصها، مما أدى إلى تعزيز إنتاج الكربوهيدرات (,2019 2019). يمكن أن تعزى زيادة محتويات البروتين والسكر بسبب تحضير الأعشاب البحرية إلى امتصاص غالبية العناصر الرئيسية في هذه المستخلصات، وخاصة المغنيسيوم، الذي يمكن أن يكون قد نشط تخليق الكلوروفيل، ونتيجة لذلك، تحسين معدلات التمثيل الضوئي (Castellanos-Barriga et al., 2017). إن ارتفاع تخليق البروتين دي نوفو وانخفاض أكسدة البروتين هما مصدران لزيادة محتوى البروتين في النباتات المعاملة بالأعشاب البحرية، وفقًا ل(2008) Abd-Elmoniem and Abd-Allah وقد يكون السبب في يكون ذلك بسبب تأثيره في زيادة امتصاص النيتروجين إلى الجسم. النبات الذي هو مقدمة للأحماض الأمينية. قد يكون السبب في زيادة تراكم الدهون في شتلات الأعشاب البحرية المعالجة في هذه الدراسة هو تأثير المستخلصات العالى على استقرار الدهون زيادة تراكم الدهون في شتلات الأعشاب البحرية المعالجة في هذه الدراسة هو تأثير المستخلصات العالى على استقرار الدهون زيادة تراكم الدهون في شتلات الأعشاب البحرية المعالجة في هذه الدراسة هو تأثير المستخلصات العالى على استقرار الدهون

الغشائية وزيادة نشاط إنزيمات تصنيع الدهون، بالإضافة إلى انخفاض توليد ROS، الذي يسبب بيروكسيد الدهون ويعطل نشاط الإنزيم(Kasim et al., 2016).

ثبت أن مستخلصات الأعشاب البحرية تحتوي على مجموعة متنوعة من المركبات النشطة بيولوجيًا بما في ذلك الفيتامينات والبروتينات ومضادات الأكسدة والأحماض الدهنية غير المشبعة والكاروتينات، من بين العديد من المركبات الأخرى، التي تحفز نمو الجذور وامتصاص المعادن إلى جانب تحفيز انقسام الخلايا وتوسيع الخلايا، مما يؤدي إلى زيادة إجمالي نمو النبات (Aziz et al., 2011). أدت التركيزات العالية من الأسمدة السائلة للأعشاب البحرية إلى إبطاء مؤشر معدل الانقسام الميتوزي، والذي قد يكون بسبب المستويات العالية من المعادن مثل الحديد والزنك والكادميوم والنحاس والمنغنيز. تؤثر هذه المعادن على بعض الأنشطة الأنزيمية وتزيل استقطاب غشاء الخلية الجذرية على الفور، مما يزيد من نفاذية الغشاء ويمنع امتصاص المغذيات النباتية، مما يؤدي إلى انخفاض انقسام الخلايا وعدم القدرة على إعطاء جميع العناصر الغذائية التي يحتاجها النبات بتركيزات كافية -EI). Sheekh et al., 2016; Kocira et al., 2019)

Table (2): Effect of humic acid and seaweed extracts on quality of barley cv. Giza 129.

البروتين	دنیل	المحصول	محصول	وزن -	375	375	
(%)	الحصاد	البيولوجي	الحبوب (طن/	1000	السنبليات/	السنابل	المعاملات
` '	(%)	(طن / هكتار)	هکتار)	حبة (جم)	سنبلة	² a/	
							1) حمض الهيوميك (كجم/ هكتار)
7.84	40.75	6.65	2.71	28.79	35.78	230.50	كنترول
8.25	41.84	7.05	2.95	33.37	38.50	238.75	50
8.65	43.22	7.45	3.22	37.65	43.48	251.56	100
9.20	44.49	9.62	4.28	43.60	47.39	280.33	150
0.06	1.08	0.13	0.11	0.33	2.74	11.22	LSD _(0.05)
							2) الأعشاب البحرية (مل/ لتر)
7.66	38.69	7.16	2.77	30.81	37.71	233.32	كنترول
8.28	39.42	7.89	3.11	33.17	40.22	241.51	4
8.57	41.66	8.09	3.37	38.82	42.87	255.66	8
9.88	49.90	9.76	4.87	44.25	46.09	282.42	12
0.05	0.49	0.10	0.06	0.38	0.32	8.26	LSD _(0.05)
* *	* *	**	**	* *	* *	* *	التداخل (2×1)

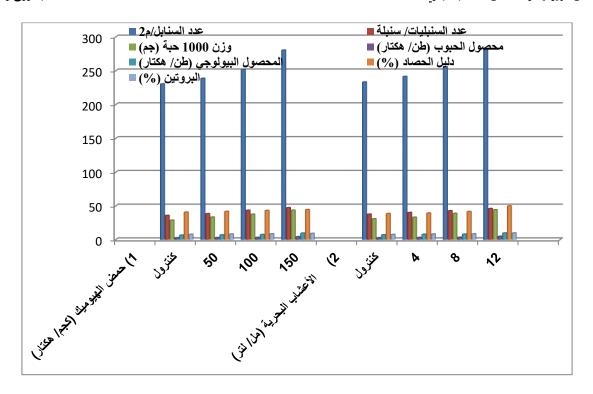


Fig. (2): Effect of humic acid and seaweed extracts on quality of barley cv. Giza 129.

REFERENCES

- **A.O.A.C.**, (1990). Official Methods of Analysis. 20th Ed. Association of official analysis Chemists, Arlington, Virginia, USA, No 984.
- **Abdel-Gawad, A.A., K.A. El-Shouny, S.A. Saleh and M.A. Ahmed (1987).** Partition and migration of dry matter in newly cultivated wheat cultivars. Egypt. J. Agron., 12 (1-2): 1-16.
- **Abd-Elmoniem, E.A. and A.S. Abd-Allah (2008).** Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines. Am. J. Agric. Environ. Sci., 4: 427–433.
- **Akinremi, O.O., H.H. Janzen, R.L. Lemke and F.J. Larney (2000).** Response of canola, wheat and green beans to leonardite additions. Canadian J. Soil Sci., 80: 437-443.
- **Ali, O., A. Ramsubhag and J. Jayaraj (2020).** Phytoelicitor activity of *Sargassum vulgare* and *Acanthophora spicifera* extracts and their prospects for use in vegetable crops for sustainable crop production. J. Appli. Phycology, 33(1): 639–651.
- **Al-Karablieh, E. and A. Jabarin** (2010). Different rangeland management systems to reduce livestock feeding costs in arid and semi-arid areas in Jordan. Z Ausl Landwirtsch, 49: 91-109.
- **Altindal, D. (2019).** Effect of seaweed extract (se) applications on seed germination characteristics of wheat in salinity conditions. Int. J. Agric. Life Sci., 3(1): 115-120.
- **AL-Ubeidi, M., H. AL-Rashedy and A. Abdul-Jabar (2012).** Effect of the different seaweed extract (Seamino) concentrations on growth and seed chemical composition of two wheat varieties. Rafidain J. Sci., 23(2):100-13.
- Amiri, F.Z., M.K. Souri, J.M. Ghanbari and T.A. Mohammadi (2022). Influence of humic acid application on onion growth characteristics under water deficit conditions. J. Plant Nutr., 45(7): 1030-40.
- **Ampong, K., M.S. Thilakaranthna and L.Y. Gorim (2022).** Understanding the role of humic acids on crop performance and soil health. Front. Agron. 4: 848621.
- Anwar, S., F. Iqbal, W. A. Khattak, M. Islam, B. Iqbal and S. Khan (2016). Response of wheat crop to humic acid and nitrogen levels. EC Agric., 3 (1): 558-565.

- **Ashok, V., N. Vijayanand and S. Rathinavel (2004).** Bio-fertilizing efficiency of seaweed liquid extract of *Hydroclathrus clathratus* on *Sorghum vulgare*. Seaweed Res. Utiln., 26:181-6.
- **Aziz, N.G., M.H. Mahgoub and H.S. Siam (2011).** Growth, flowering and chemical constituents performance of *Amaranthus tricolor* plants as influenced by seaweed (*Ascophyllum nodosum*) extract application under salt stress conditions. J. Appl. Sci. Res., 7: 1472–1484
- Baum, M., S. Grando, G. Backes, A. Jahoor, A. Sabbagh and S. Ceccarelli (2003). QTLs for agronomic traits in the mediterranean environment identified in recombinant inbred lines of the cross "Arta" × H. Spontaneum 41-1. Theoretical and Appli. Genetics, 107: 1215–1225.
- **Bayat, H., F. Shafie, M.H. Aminifard and S. Daghighi (2021)**. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (*Achillea millefolium* L.). Sci Horti., 279: 109912.
- Beleggia, R., D.B.M. Ficco, F.M. Nigro, V. Giovanniello, S.A. Colecchia, I. Pecorella and P. De Vita, (2021). Effect of sowing date on bioactive compounds and grain morphology of three pigmented cereal species. Agron., 11: 591.
- **Bijanzadeh, E., Y. Eman and M. Perssarakli (2020).** Biochemical response of water stressed Triticale to humic acid and Jasmonic acid. Plant Nutr., 44: 252-269.
- Canellas, L. P., N. O. A. Canellas, L. E. S. Luiz Eduardo, F. L. Olivares and A. Piccolo (2020). Plant chemical priming by humic acids. Chem. Biol. Technol. Agric., 7: 1-12.
- Castellanos-Barriga, L.G., F. Santacruz-Ruvalcaba, G. Hernández-Carmona, E. Ramírez-Briones and R.M. Hernández-Herrera (2017). Effect of seaweed liquid extracts from *Ulva lactuca* on seedling growth of Mung bean (*Vigna radiata*). J. Appl. Phycol., 29: 2479–2488
- Chanthini, K.M.P., S. Senthil-Nathan, G.S. Pavithra, P. Malarvizhi, P. Murugan, A. Deva-Andrews, M. Janaki, H. Sivanesh, R. Ramasubramanian and V. Stanley-Raja (2022) Aqueous seaweed extract alleviates salinity-induced toxicities in rice plants (Oryza sativa L.) by modulating their physiology and biochemistry. Agric., 12: 2049.
- Chojnacka, K. and S. K. Kim (2013). Introduction of marine algae extracts. In: S.-K. Kim and K. Chojnacka, (Eds) Marine Algae Extracts- processes, products and applications, part 2. Wiley-VCH
- **Dawood, M.G., Y.R. Abdel-Baky, M.E.S. El-Awadi and G. S. Bakhoum (2019).** "Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application," Bull. Nat. Res. Cent., 43: 10-19.
- **Dinçsoy, M. and F. Sönmez (2019)**. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (*Triticum aestivum* L. var. Delfii) with same soil properties. J. Plant Nutri., 42: 2757–2772.
- **Du Jardin, P. (2015)** Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic., 196:3–14.
- **Ebrahimi, M., M.K. Souri, A. Mousavi and N. Sahebani (2021).** Biochar and vermicompost improve growth and physiological traits of eggplant (*Solanum melongena* L.) under deficit irrigation. Chem. Biol. Technol. Agric., 8(1): 19.
- **Ekin, Z. (2019).** "Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture," Sustainability, 3417-3425.
- **El-Hamdi, Kh. H., E. M. Selim and H. I. M. Husein (2012).** Integrated impacts of humic acid, halotolerant N2 fixers and nitrogen application on wheat yied (*Triticum aestivum* L.), yield component and nutrient uptake. J. Soil Sci. and Agric. Eng., Mansoura Univ., 3 (12): 1263 1274.
- **El-Sheekh, M., M. Ismail and M. Hamouda** (2016) Influence of some brown seaweed extracts on germination and cytological responses *of Trigonella foenum-graecum* L. Biotech. Indian J. Res., 12: 1–12.

- **El-Sheikh, M.A., S.N. Sleim and H.S. Abou-Elnasr (2020).** The Effect of Seaweed Extracts on Chemical Composition of Tomato Plant (*Solanum lycopersicum*). Alex. Sci. Exch. J., 41: 523-529.
- **EL-Tanahy, A.M.M., N.M. Marzouk, A.R. Mahmoud and A.H. Ali (2019).** Influence of humic acid application and yeast extract on growth and productivity of Okra plants. Mid. East J. Agric. Res., 8: 418–424
- Fahmi, A.H., M.O.S. Sallume, A.H. Aswad, A.L. Abdulrahman, G.J. Hamdi and M.A. Abood (2020). Interaction effect of potassium fertilizer, humic acid and irrigation intervals on growth and yield of wheat. Res. Crops. 21: 31-35.
- **FAO.** (2019). Barley cultivated area and production. Food and Agriculture Organization of the United Nation.
- **FAOSTAT, (2019).**"Food and Agriculture Organization of the United Nations, Iraq," Available online: http://www.fao.org/faostat/en/, accessed on 10.
- **FAOSTAT, (2021).** Food and Agriculture Organization of the United Nations. Statistical Database. Available online: http://www.fao.org/faostat/en/#home (accessed on 2 December).
- **Finnie, J.F. and J. van Staden (1985).** Effect of seaweed concentrate and applied hormones on in vitro cultured tomato roots. J. Plant Physiol., 120: 215–222.
- **Freiwan, M. and M. Kadioglu (2008).** Spatial and temporal analysis of climatological data in Jordan. Int. J. Climatol, 28(4): 521-35.
- **Fuentes, M., R. Baigorri, G. González-Gaitano and J. M. García-Mina (2018).** New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. J. Soils Sediments, 18: 1389-1399.
- Geng, L., M. Li, G. Zhang and L. Ye (2022). Barley: A potential cereal for producing healthy and functional foods. Food Qual. Saf., 6, fyac012.
- **Gollan, J.R. and J.T. Wright** (2006). Limited grazing pressure by native herbivores on the invasive seaweed *Caulerpa taxifolia* in a temperate Australian estuary. Marine and Freshwater Res., 57(7):685-94.
- Guo, T., C. Horvath, L. Chen, J. Chen and B. Zheng (2020). Understanding the Nutrient Composition and Nutritional Functions of Highland Barley (Qingke): A Review. Trends Food Sci. Technol., 103:109–117.
- Gupta, S., W.A. Stirk, L. Plačková, M.G. Kulkarni, K. Doležal and J. Van Staden (2021). Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of *Allium cepa* L. (onion). J. Plant Physiol., 262: 153437
- **Gürsoy, M.** (2020). Effect of Chitosan pretreatment on seedling growth and antioxidant enzyme activity of safflower (*Carthamus tinctorius* L.) cultivars under saline conditions. Appl. Ecol. Environ. Res., 18: 6589–6603.
- **Gürsoy, M. (2022a).** Biostimulant applications in agriculture. 7th International Zeugma Conference on Scientific Research, January 21–23, Gaziantep/ Türkiye, :41–47
- **Gürsoy, M. (2022b).** Role of biostimulant priming applications on germination, growth and chlorophyll content of sunflower (*Helianthus annuus* L.) cultivars under salinity stress. Selcuk J. Agric. Food Sci., 36: 75–81.
- Hajiboland, R., A. Joudmand, N. Aliasgharzad, R. Tolrá and C. Poschenrieder (2019). "Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley," Crop Pasture Sci., (70): 218.
- **Hsu, H.H.** (1986). Chelates in plant nutrition. In: Foliar feeding of plants with amino acid chelates (Ashmead, H.D., H.H. Ashmead, G.W. Miller and H.H. Hsu, Noyes Publications, Park Ridge, New Jersey, USA), 209-217.
- **Hurtado, A.Q., D.A. Yunque, K. Tibubos and A.T. Critchley (2009).** Use of Acadian Marine plant extract powder from *Ascophyllum nodosum* in tissue culture of Kappaphycus varieties. J. Appl. Phycol., 21: 633–639.

- **Issa, R., M. Boras and R. Zidan (2019).** Effect of seaweed extract on the growth and productivity of potato plants. SSRG Int. J. Agric. Environ. Sci., 6(2):83-89.
- Jarošová, M., B. Klejdus, J. Kováčik, P. Babula and J. Hedbavny (2016). Humic acid protects barley against salinity. Acta Physiol. Plantarum, 38: 1-9.
- Jing, L., Z. Zhengfeng, C. Zhenjiang, F. W. James, M. Kamran, C. Taixiang and C. Chunjie (2022). Inoculation of barley (*Hordeum vulgare*) with the endophyte epichloë bromicola affects plant growth, and the microbial community in roots and rhizosphere soil. J. Fungi, 8(172): 2–22.
- **Kandil, A.A., A.E.M. Sharief, S.E. Seadh and D.S.K. Altai (2016).** Role of humic acid and amino acids in limiting loss of nitrogen fertilizer and increasing productivity of some wheat cultivars grown under newly reclaimed sandy soil. Int. J. Adv. Res. Biol. Sci., 3(4): 123-136.
- **Kasim, W.A., E.A.M. Hamada, N.G.S. El-Din and S.K. Eskander (2015).** Influence of seaweed extracts on the growth, some metabolic activities and yield of wheat grown under drought stress. Int. J. Agron. Agric. Res., 7(2): 173-189.
- **Kasim, W.A., K. Saad-Allah and M. Hamouda (2016).** Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (*Raphanus sativus*). Int. J. Agric. Biol., 18: 653–660.
- **Ketehouli, T., K.F.I. Carther, M. Noman, F.W. Wang, X.W. Li and H.Y. Li (2019).** Adaptation of plants to salt stress: Characterization of Na⁺ and K⁺ transporters and role of CBL gene family in regulating salt stress response. Agron., 9: 687.
- **Ko, J., C. T. Ng, S Jeong, J.H. Kim, B. Lee and H. Y. Kim** (2019). Impacts of regional climate change on barley yield and its geographical variation in South Korea. Int. Agrophys., 33: 81–96.
- Kocira, S., A. Szparaga, M. Kuboń, E. Czerwińska and T. Piskier (2019). Morphological and biochemical responses of Glycine max (L.) Merr. To the use of seaweed extract. Agron., 9: 93.
- Kulkarni, M.G., K.R.R. Rengasamy, S.C. Pendota, J. Gruz, L. Plačková, O. Novák, K. Doležal, J. Van Staden (2019). Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in *Spinacia oleracea* L. N Biotech., 48:83–89.
- Laskosky, J. D., A. A. Mante, F. Zvomuya, I. Amarakoon and L. Leskiw (2020). A bioassay of long -term stockpiled salvaged soil amended with biochar, peat, and humalite. Agrosyst. Geosci. Environ., 3: e20068.
- Manal, F.M., A.T. Thalooth, A.G. Ahmed, M.H. Mohamed and T.A. Elewa (2016). Evaluation of the effect of chemical fertilizer and humic acid on yield and yield components of wheat plants (*Triticum aestivum*, L.) grown under newly reclaimed sandy soil. Int. J. Chem. Tech. Res., 9 (8): 154-161.
- **Mohammad, A.M.A.** (2013). The effect of using different concentration of soluamine and NaCl on the growth and yield components of two kinds wheat (*Triticum aestivum* L.). J. Res. Coll. Basic Educ., 12(2): 703-723.
- **Mohy El-Din, S.M.** (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings. Egypt J. Exp. Biol., 11:31–39.
- Moustafa, E.S., E.S.E. El-Sobky, H.I. Farag, M.A. Yasin, A. Attia and M.O. Rady (2021). Sowing date and genotype influence on yield and quality of dual-purpose barley in a salt-affected arid region. Agron., 11: 717
- Nardi, S., D. Pizeghello, A. Muscdo and A. Vianello (2002). Physiological effects of humic substances on higher plants. Soil Biochem., 34: 1527-1536.
- Nardi, S., M. Schiavon and O. Francioso (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26: 2256

- Nowak, R., M. Szczepanek, K. Blaszczyk, J. Kobus-Cisowska, A. Przybylska-Balcerek, K. Stuper-Szablewska, J. Poberez ny, M.B. Hassan-pouraghdam and F. Rasouli (2023). Impact of the farming system and amino-acid biostimulants on the content of carotenoids, fatty acids, and polyphenols in alternative and common barley genotypes. Agron., 13: 1852. 1-21
- **Parađiković, N. (2019).** Biostimulants research in some horticultural plant species-a review. Food Energy Secu., 8(2).
- **Radwan, F.I., M.A. Gomaa, I.F. Rehab and S.I.A. Adam (2015).** Impact of humic acid application, foliar micronutrients and biofertilization on growth, productivity and quality of wheat (*Triticum aestivum*, L.). Mid. East J. Agric. Res., 4 (2): 130-140.
- Ramadan, K.M.A., H.S. El-Beltagi, T.A.A. Abd El-Mageed, H.S. Saudy, H.H. Al-Otaibi and M.A.A. Mahmoud (2023). The changes in various physio-biochemical parameters and yield traits of faba bean due to humic acid plus 6-benzylaminopurine application under deficit irrigation. Agron., 13:1227
- **Rashid, K., K.C. Senthil and H.P.M. Mohammed (2017).** Healthcare Benefits of *Hordeum vulgare* L (Barley): A Phyto-Pharmacological Review. J. Pharma. Pharmacodynamics, 9(4): 207-210.
- Rayorath, P., W. Z. Khan, R. Palanisamy, S. L. MacKinnon, R. Stefanova, S. D. Hankins, A. T. Critchley and B. Prithiviraj (2008). Extracts of the brown seaweed *Ascophyllum nodosum* induce gibberellic acid (GA₃)-independent amylase activity in barley. J. Plant Growth Regu., 27(4): 370–379.
- Saidimoradi, D., N. Ghaderi and T. Javadi (2019) Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch). Sci. Hort., 15: 256108594.
- Salvi, L., C. Brunetti, E. Cataldo, A. Niccolai, M. Centritto, F. Ferrini and G.B. Mattii (2019). Effects of *Ascophyllum nodosum* extract on *Vitis vinifera*: consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem., 139: 21-32.
- Shahbazi, F., M.S. Nejad, A. Salimi and A. Gilani (2015). Effect of seaweed extracts on the growth and biochemical constituents of wheat. Int. J. Agric. Crop Sci., 8(3): 283-287.
- **Shukry, W.M., M.E. Abu-Ria and S.A. Abo-Hamed (2023).** The efficiency of humic acid for improving salinity tolerance in salt sensitive rice (*Oryza sativa*): growth responses and physiological mechanisms. Gesunde Pflanzen. https://doi.org/10.1007/s10343-023-00885-6
- Siebenhandl, S., H. Grausgruber, N. Pellegrini, D. Del Rio, V. Fogliano, R. Pernice and E. Berghofer (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55: 8541–8547.
- **Sivasankari, S., V. Venkatesalu, M. Anantharaj and M. Chandrasekaran (2006).** Effect of seaweed extracts on the growth and biochemical constituents of *Vigna sinensis*. Bioresou. Techn., 97(14): 1745-51.
- **Snedecor, G.W. and G.W. Cochran (1990).** Statistical Methods. 8th Ed Iowa State Univ. Press Ames, Iowa. USA.
- **Ulukan, H. (2008).** Effect of soil applied humic acid at different sowing times on some yield components in wheat (*Triticum* spp.) hybrids Int. J. Bot., 4(2): 164-175.
- Van Tol de Castro, T. A., R. L. L. Berbara, O. C. H. Tavares, D. F. Mello and G. E. G. Pereira (2021). Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem., 162: 171–184.
- Wali, A.M., A. Shamseldin, F. Radwan, E. Abd ElLateef and N. Zaki (2018). Response of barley (*Hordeum vulgare*) cultivars to humic acid, mineral and biofertilization under calcareous soil conditions, Mid. East J. Agric. Res., 7: 71-82.

- **Wightman, F., E. Schneider and K. Thimann (1980).** Hormonal factors controlling the initiation and development of lateral roots: II. Effects of exogenous growth factors on lateral root formation in pea roots. Physiologia Plantarum., 49(3): 304-14.
- Yang, F., C. Tang and M. Antonietti, (2021). Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem. Soc. Rev., 50: 6221–6239.

الملخص

Effect of humic acid and seaweed extracts on vegetative growth and quality of Barley
Mhfod A Abdul Razzag
Rajaa A Shareef

Environmental collage Derna University. rjaalshryf35@gmail.com

Environmental collage Derna University. 105773mhfod@gmail.com

ABSTRACT

The field experiment was conducted in the city of Shahat - Al-Jabal Al-Akhdar - Libya during the winter season 2023-2024 to study the effect of humic acid and seaweed extracts on vegetative growth and quality of Barley (Hordeum vulgare, L.) cv., Giza 129. The experiments were carried out in a split plot design with three replicates. four humic acid rates (control, 50, 100 and 150 kg/ha) were arranged in main plots and four seaweed extract (control, 4, 8 and 12 ml/L) were arranged in sub- sub plots. Each replicate contained 8 treatments. Studied characters were vegetative growth i.e. (plant height, total chlorophyll (SPAD), leaf area, (cm²) and yield quality i.e. number of spikes/m², number of spikelets/spike,1000-grain weight, grain yield (t/ha), biological yield (t/ha), harvest index (%) and protein content (%). Results showed that increasing humic acid rate up to 150 kg/ ha significantly increased all vegetative growth were studied (plant height, total chlorophyll and leaf area) and yield quality i.e. number of spikes/m², number of spikelets/ spike,1000-grain weight, grain yield (t/ha), biological yield (t/ha), harvest index (%) and protein content (%), as compared to control treatment which recorded the lowest value of this traits. On the other hand, seaweed extracts up to 12 ml/L recorded the highest values of all vegetative growth were studied (plant height, total chlorophyll and leaf area), and yield quality i.e. number of spikes/ m², number of spikelets/ spike,1000-grain weight, grain yield (t/ ha), biological yield (t/ ha), harvest index (%) and protein content (%), as compared to control treatment which recorded the lowest values of this traits. The interaction between humic acid and seaweed extracts on vegetative growth and quality of Barley (Hordeum vulgare, L.) cv. Giza 129 was highly significant on all vegetative growth and yield quality were studied under this

Keywords: Barley (*Hordeum vulgare* L.), humic acid, seaweed extracts, vegetative growth, yield and yield quality.