Regulation of Macrophage Metabolism by Traditional PlantBased Extracts Under High-Glucose and Inflammatory Stress: An in vitro study

Authors

  • *Ali M. Nouh1 and E J Pool2 1Public Health Sciences Department, Fezzan University - Libya 2Medical Bioscience Department, University of the Western Cape- South Africa , Author

DOI:

https://doi.org/10.65405/.v10i37.521

Keywords:

Diabetes mellitus, High glucose, Metabolic syndrome, Artemisia afra, Cinnamon verum, Fenugreek., Inflammation

Abstract

Background: Chronic inflammation associated with diabetes often lead to abnormal lipid
levels and oxidative stress, both of which play a key role in the progression of metabolic
syndrome. Researchers continue to investigate medications aimed at preventing or
managing diabetes-related complications. This study investigated the therapeutic potential of
three herbal extracts by assessing their impact on macrophage oxidative bioactive marker
expression in metabolic disorders and comparing the results with those of conventional
Western medicine. Method: In this study, the following inhibited concentrations were
applied to treat LPS-stimulated inflammation in high-glucose mimic cell cultures: Artemisia
afra (200 µg/ml), Cinnamon verum (250 µg/ml), Fenugreek (2500 µg/ml), and metformin
(200 µg/ml). Results: LPL is significantly overexpressed, while SOD-2 activity is
suppressed in the presence of high glucose, both with and without stimulation by LPSactivated macrophage cells. A. afra and C. verum extracts promoted cell growth under high
glucose conditions more effectively than Fenugreek and metformin. Cinnamon verum
significantly enhances the antioxidant enzyme SOD-2 and effectively downregulates the
LPL enzyme under high glucose conditions, both in the presence and absence of stimulation.
Compared to Artemisia afra, fenugreek, or metformin. In conclusion: These herbs help
regulate metabolic markers in diabetic patients may help prevent diabetes progression, treat
atherosclerosis, and manage chronic inflammation while supporting glucose control. Future
investigations are essential to identify and understand the bioactive molecules in these herbal
therapies involved in this protocol.

Downloads

Download data is not yet available.

References

1. Tabatabaei-Malazy, O., Larijani, B., & Abdollahi, M. (2015). Targeting

metabolic disorders by natural products. Journal of Diabetes &

Metabolic Disorders, 14 (1), 1-21.

2. Kina-Tanada, M., Sakanashi, M., Tanimoto, A., Kaname, T., Matsuzaki,

T., Noguchi, K., ... & Tsutsui, M. (2017). Long-term dietary nitrite and

nitrate deficiency causes the metabolic syndrome, endothelial

dysfunction and cardiovascular death in mice. Diabetologia, 60 (6),

1138-1151.

3. Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021).

Dyslipidemia and diabetes mellitus: Role of lipoprotein species and

Comprehensive Journal of Science الشاملة العلوم مجلة

عدد خاص بالمؤتمر الدولي الثالث للعلوم والتقنية (2025 .NOV (,)37 (Issue ,)10 (Volume

SICST2025, www.sicst.ly )2025نوفمبر )،(37 )العدد ،(10 )المجلد

ردمد: 3014-6266 3014-6266 :ISSN

المجلد )10(، العدد )37(، )نوفمبر2025( ردمد: 3014-6266 :ISSN 3-1345

interrelated pathways of lipid metabolism in diabetes mellitus. Current

Opinion in Pharmacology, 61, 21-27.

4. 504. Vaziri, N. D. (2016). Disorders of lipid metabolism in nephrotic

syndrome: mechanisms and consequences. Kidney international, 90 (1),

41-52.

5. Lan, G., Xie, W., Li, L., Zhang, M., Liu, D., Tan, Y. L., ... & Tang, C. K.

(2016). MicroRNA-134 actives lipoprotein lipase-mediated lipid

accumulation and inflammatory response by targeting angiopoietin-like 4

in THP-1 macrophages. Biochemical and biophysical research

communications, 472 (3), 410-417.

6. Gonzalez, L. L., Garrie, K., & Turner, M. D. (2018). Type 2 diabetes–an

autoinflammatory disease driven by metabolic stress. Biochimica et

Biophysica Acta - Molecular Basis of Disease, 1864 (11), 3805-3823.

7. Manish Lamoria, M. D., Yadav, N., & Ayana, A. M. (2024).

Pathophysiology of Atherosclerosis and its adverse effect: Systematic

Review.

8. Narasimhulu, C. A., Fernandez-Ruiz, I., Selvarajan, K., Jiang, X.,

Sengupta, B., Riad, A., & Parthasarathy, S. (2016). Atherosclerosis—do

we know enough already to prevent it?. Current Opinion in

Pharmacology, 27, 92-102.

9. Kersten, S. (2014). Physiological regulation of lipoprotein lipase.

Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of

Lipids, 1841 (7), 919- 933.

10.Li, Y., He, P. P., Zhang, D. W., Zheng, X. L., Cayabyab, F. S., Yin, W.

D., & Tang, C. K. (2014). Lipoprotein lipase: from gene to

atherosclerosis. Atherosclerosis, 237 (2), 597-608.

11.Cervantes, J., & Kanter, J. E. (2023). Monocyte and macrophage foam

cells in diabetes-accelerated atherosclerosis. Frontiers in cardiovascular

medicine, 10, 1213177.

12.Lillis, A. P., Muratoglu, S. C., Au, D. T., Migliorini, M., Lee, M. J.,

Fried, S. K., ... & Strickland, D. K. (2015). LDL receptor-related protein1 (LRP1) regulates cholesterol accumulation in macrophages. Public

library of science one, 10 (6), e0128903.

13.Zhang, X., Ye, Q., Gong, D., Lv, Y., Cheng, H., Huang, C., ... & Tang,

C. (2017). Apelin- 13 inhibits lipoprotein lipase expression via the

APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophagederived foam cells. Acta Biochimica et Biophysica Sinica, 49 (6), 530-

540.

14.Wang, J., Ding, N., Chen, C., Gu, S., Liu, J., Wang, Y., ... & Li, Y.

(2025). Adropin: a key player in immune cell homeostasis and regulation

Downloads

Published

2025-11-25

How to Cite

Regulation of Macrophage Metabolism by Traditional PlantBased Extracts Under High-Glucose and Inflammatory Stress: An in vitro study. (2025). Comprehensive Journal of Science, 10(37), 1334-1349. https://doi.org/10.65405/.v10i37.521