د ا رسة مقارنة بين خوارزميات التشفير التقليدية وخوارزميات ما بعد التشفير الكمي في ظل التهديدات الكمية )إج ا رء مقارنة تحليلية بين خوارزمية التشفير المتماثل المتقدمة AES وخوارزمية ما بعد التشفير الكمي CRYSTALS-Kyber

Authors

  • سالمين محمد بالقاسم الحاسي المعهد العالي للعلوم والتقنية اجدابيا , Author

DOI:

https://doi.org/10.65405/.v10i37.445

Keywords:

معيار التشفير المتقدم AES ، انترنت الأشياء، التشفير الهجين ، خوارزمية CRYSTALS-Kyber ، الكيوبت.

Abstract

This study aims to provide a comprehensive theoretical review of classical and quantum cryptography concepts, highlighting the fundamental differences between traditional algorithms and post-quantum algorithms. An analytical comparison is conducted between the Advanced Encryption Standard (AES), a symmetric encryption algorithm, and the post-quantum encryption algorithm CRYSTALS-Kyber, focusing on security levels and performance efficiency. The study also addresses key challenges associated with transitioning to quantum-resistant cryptographic environments, offering an analysis of the strengths and weaknesses of each algorithm under review. This is particularly relevant in light of the rapid advancements in quantum computing technologies and their implications for the future of information security. In addition to assessing the readiness of these algorithms to address future security challenges, the study provides a detailed comparison of the protection levels offered by each of the two algorithms.

Downloads

Download data is not yet available.

References

1. National Institute of Standards and Technology (NIST). (2022). Post

Quantum Cryptography Standardization. Retrieved from

https://csrc.nist.gov/projects/post-quantum-cryptography

2. Bernstein, D. J., & Lange, T. (2017). Post-quantum cryptography. Nature, 549(7671), 188–194.

https://doi.org/10.1038/nature23461

3. Bos, J. W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., & Stehlé, D. (2018). CRYSTALS – Kyber: A CCA-secure Module-Lattice-Based KEM. In 2018 IEEE European Symposium on Security and Privacy (Euro S&P) (pp. 353-367). IEEE.

https://eprint.iacr.org/2017/634.pdf

4. Daemen, J., & Rijmen, V. (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Springer.

5. Borgaonkar, R., & Niemi, V. (2018). Security for Internet of Things: Analysis of Existing Protocols and Open Challenges. In Proceedings of the 2nd International Conference on Cryptography, Security and Privacy (pp. 99-104). ACM.

https://doi.org/10.1145/3199478.3199503

6. Al-Janabi, S., & Kadhim, H. (2020). A Comparative Study of Lightweight Cryptography Algorithms for IoT Applications. International Journal of Electrical and Computer Engineering, 10(1), 676–684.

7. Chen, L., Jordan, S., Liu, Y. K., Moody, D., Peralta, R., Perlner, R., & Smith-Tone, D. (2016). Report on Post-Quantum Cryptography (NISTIR 8105). National Institute of Standards and Technology.

https://doi.org/10.6028/NIST.IR.8105

8. Bindel, N., Buchmann, J., Krausz, L., & Struck, L. (2017). Hybrid Post-Quantum TLS. In Post-Quantum Cryptography (pp. 206–221). Springer, Cham.

https://doi.org/10.1007/978-3-319-59879-6_12

9. Puthal, D., Malik, N., Mohanty, S. P., Kougianos, E., & Yang, C. (2018). The Next Generation of Security for the Internet of Things: Cryptography and Machine Learning. IEEE Access, 7, 464–488.

10. Bertoni, G., Daemen, J., Peeters, M., & Assche, G. V. (2005).

The Road from AES to Keccak: The Case for a New Standard.

NIST Workshop on Hash Functions https://www.researchgate.net/publication/263336812_The_making_of_KECCAK

11.Zhao,Z.,Zhang,H., & LI,X.(2024) " An elementary review on basic principle and development of quantum entanglement https://pmc.ncbi.nlm.nih.gov/articles/PMC10948723/

12. M. Barbosa, F. Dupressoir, A. Hülsing, M. Meijers, and P.-Y. Strub, “A Tight Security Proof for SPHINCS+, Formally Verified,” IACR ePrint Archive, Report 2024/910, 2024. [Online]. Available: https://eprint.iacr.org/2024/910

13. A. Sharma, R. Patel, and N. Kumar, “Comparative analysis of lattice-based cryptographic schemes for secure IoT communications,” Journal of Network and Systems Security, vol. 12, no. 3, pp. 145–158, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s43926-024-00069-2

14. T. Sharma, S. A. Soleymani, M. Shojafar, and R. Tafazolli, "Secured Communication Schemes for UAVs in 5G: CRYSTALS-Kyber and IDS," *arXiv preprint arXiv:2501.19191*, 2025. [Online]. Available: https://arxiv.org/abs/2501.19191

15. D. D. Demir, B. Bilgin, and M. C. Onbasli, “Performance Analysis and Industry Deployment of Post-Quantum Cryptography Algorithms,” arXiv preprint arXiv:2503.12952, 2025. [Online].

Downloads

Published

2025-11-25

How to Cite

د ا رسة مقارنة بين خوارزميات التشفير التقليدية وخوارزميات ما بعد التشفير الكمي في ظل التهديدات الكمية )إج ا رء مقارنة تحليلية بين خوارزمية التشفير المتماثل المتقدمة AES وخوارزمية ما بعد التشفير الكمي CRYSTALS-Kyber. (2025). Comprehensive Journal of Science, 10(37), 1427-1447. https://doi.org/10.65405/.v10i37.445