بعض التطبيقات المتقدمة للمعادلات التفاضلية الجزئية في الفيزياء الحديثة: من الأنظمة الكلاسيكية الى الحديثة.
DOI:
https://doi.org/10.65405/4ta24g20Keywords:
Partial Differential Equations, Heat Equation, Wave Equations and Electromagnetism, Numerical Methods, Schrodinger equationAbstract
This research paper presents a study of some advanced application of partial differential equations (PDEs) in modeling physics. The conclusion of this research is that PDES are the cornerstone of physical systems across multiple scales, and at explores some advanced applications of PDES in classical field theory, quantum mechanics, and relativistic physics. We analyze the heat equation as a prototype for diffusion processes, the wave equation for electromagnetic radiation, and the Schrodinger equation for quantum dynamics. Novel contributions include a comparative analysis of numerical methods for solving nonlinear PDEs and a discussion of their implications for emerging technologies. The results highlight the predictive power of PDE-based modeling and its critical role in theoretical and applied physics.
Downloads
References
1- آس فارلو- ترجمة د. مها عواض الكبيسي- المعادلات التفاضلية الجزئية-منشورات جامعة عمر المختار البيضاء- بنغازي – ليبيا-2005.
2- Farlow,S,J.(1993).Partial Differential Equation for Scientists and Engineers. Dover Publications.
3- Mohammed Hussein Alshmary. (2020) .Applications of Partial Differential Equations. Journal of Physics: Conference Series 1591 (2020) 012105.
4- Caslaw,H,S.,& Jaeger,J.C. (1959). Conduction of Heat in Solids. Oxford University Press.
5- Grffiths,D,J. (2017).Introduction to Electrodynamics. Cambridge University Press.
6- Grffiths,D,J. (2018).Introduction to Quantum Mechanics. Cambridge University Press.
7- Taha,T.R.,& Ablowitz, M.J.(1984). Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations. Journal of Computational Physics, 55(2), 192-202.
8- Dr Abdallah Mazzeer, The Schrödinger Equation , 353 PHYS - CH7 – Part2.
9- Nakhe H. Asmar(2005), Partial Differential Equations with Fourier Series and Boundary Value Problems. Second Edition, University of Missouri.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Comprehensive Journal of Science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.









