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Abstract

The transition toward sustainable energy systems in developing economies faces multifaceted
constraints including limited financial resources, institutional capacity gaps, and policy
implementation challenges. Conventional forecasting approaches for renewable electricity
penetration predominantly emphasize technical and economic variables while neglecting the
catalytic role of policy frameworks as dynamic predictors. This research introduces a novel
machine learning architecture that explicitly integrates quantitative policy indicators derived
from the World Bank's Regulatory Indicators for Sustainable Energy (RISE), IRENA's
Renewables Readiness Assessments (RRA), and IEA Country Energy Profiles into a Long
Short-Term Memory (LSTM) network for predicting non-hydro renewable electricity
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generation across 71 developing nations. Unlike static regression models, this research
framework treats policy variables as time-evolving features that modulate the temporal
dynamics of renewable adoption trajectories. The model architecture incorporates attention
mechanisms to weight policy dimensions according to their contextual relevance across
heterogeneous national settings. Preliminary validation demonstrates that policy-integrated
LSTM forecasting reduces prediction error by 23.7% compared to purely techno-economic
baselines, particularly in nations exhibiting rapid policy evolution. This work establishes policy
instrumentation as a first-order predictor in renewable energy forecasting and provides a
transferable methodology for evidence-based energy policy design in resource-constrained

environments.

Keywords: Renewable electricity penetration; LSTM networks; policy integration; RISE

indicators; developing countries; sustainable energy forecasting.
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1. Introduction
Global decarbonization imperatives necessitate accelerated deployment of renewable
electricity generation, particularly within developing economies that collectively represent
83% of projected global energy demand growth through 2040 [1], [2], [3]. Yet these regions
confront structural barriers including capital scarcity, grid infrastructure limitations, and
institutional fragmentation that impede renewable technology diffusion. While machine
learning techniques have demonstrated efficacy in forecasting renewable generation capacity
based on meteorological and economic variables [4], [5], a critical gap persists in modeling
policy frameworks as predictive features rather than exogenous boundary conditions [3]. The
Regulatory Indicators for Sustainable Energy (RISE) initiative represents the first
comprehensive global scorecard evaluating national policy environments across three
dimensions: energy access, energy efficiency, and renewable energy adoption [1], [2], [6], [7].
Complementing RISE, the International Renewable Energy Agency's Renewables Readiness
Assessment (RRA) provides qualitative evaluations of policy implementation capacity across
regulatory, financial, and institutional domains [8], [9], [10]. Despite their richness, these
policy datasets remain largely unexploited within predictive machine learning frameworks for
renewable energy forecasting.
This research addresses three interconnected gaps in the literature:
e The absence of temporal modeling approaches that capture policy evolution as a
dynamic driver of renewable adoption
e Limited integration of multi-source policy indicators within deep learning architectures
for energy forecasting
e Insufficient methodological frameworks for translating policy assessment scores into
actionable forecasting features
This research propose a policy-augmented LSTM architecture that treats RISE scores [2], RRA
implementation assessments, and IEA policy classifications as time-series inputs alongside
conventional predictors (GDP per capita, corruption indices, historical generation data). This
research contributions include a feature engineering methodology for converting categorical
policy assessments into continuous temporal embeddings.
e An attention-augmented LSTM architecture that dynamically weights policy
dimensions according to national context
e Empirical validation across 71 developing countries demonstrating superior predictive
performance relative to policy-agnostic baselines
e A policy sensitivity analysis framework identifying which regulatory dimensions exert
strongest influence on renewable penetration trajectories
2. Literature Review
2.1. Renewable Energy Forecasting in Developing Contexts
Machine learning applications in renewable energy forecasting have evolved from shallow
architectures (support vector regression, random forests) toward deep learning approaches
capable of capturing non-linear temporal dependencies [1], [2], [11]. LSTM networks
specifically excel in modeling sequential patterns in energy time series due to their gated
memory cells that mitigate vanishing gradient problems inherent in conventional recurrent
networks [12], [13]. Recent applications include hybrid CNN-LSTM models for wind power
forecasting in Ethiopia and multivariate LSTM architectures for solar generation prediction in
arid regions. However, these studies predominantly focus on meteorological and technical
inputs while treating policy environments as static contextual factors [14], [15], [16]. This
limitation proves particularly consequential in developing economies, where policy
interventions often constitute the primary catalyst for renewable adoption more so than
resource endowments or economic capacity alone [17].
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2.2. Policy Indicators as Predictive Features
The RISE framework evaluates national renewable energy policies across six dimensions:
target establishment, fiscal incentives, regulatory frameworks, access to finance, grid
integration requirements, and public sector leadership [1], [2], [18]. Each dimension receives
a categorical score (0-3) reflecting alignment with international best practices. Critically, RISE
assessments are conducted biennially, generating longitudinal policy trajectories that remain
unexploited in forecasting applications [19]. IRENA's RRA methodology complements RISE
by evaluating not merely policy existence but implementation capacity across institutional,
regulatory, and market dimensions . RRAs generate qualitative readiness scores that, when
quantified through expert elicitation protocols, provide nuanced indicators of policy
effectiveness beyond formal regulatory existence [1], [2], [3], [20].
2.3. LSTM Architectures for Policy-Sensitive Forecasting
Standard LSTM cells process sequential inputs through input, forget, and output gates that
regulate information flow across time steps [21], [22] . For policy-integrated forecasting, we
extend this architecture with:
e Policy embedding layers that convert categorical RISE scores into continuous vector
representations [23].
e Temporal attention mechanisms that weight policy dimensions according to their
predictive relevance at each time step [24], [25].
e Multi-head policy gating that separately processes economic, regulatory, and
institutional policy streams before fusion [1], [2], [26].
This architecture acknowledges that policy impacts manifest with variable latency fiscal
incentives may yield generation increases within 12-18 months, whereas grid integration
reforms may require 36+ months to materialize. The attention mechanism explicitly models
these differential response lags [27], [28].
3. Methodology
3.1. Dataset Description and Preprocessing
The analysis employs the Mendeley dataset (DOI: 10.17632/nb6v979284.1) comprising annual
observations from 71 developing countries spanning 2008-2022
(https://data.mendeley.com/datasets/nb6v979284/1). Variables include:
Table 1. Comprehensive Description of the Integrated Renewable Energy Policy Dataset (71
Developing Countries, 2008-2022)

Variable Specific Measurement | Temporal Primary Data Analytical
Category Variable Unit/ Scale | Frequency | Source Purpose
Name
Geographic Country name | Categorical Static World Bank Cross-country
Identifier (1SO 3166-1 WDI panel
alpha-3) identification
Country Categorical Annual World Bank Stratification by
income group | (Low/Lower- WDI development
middle/Uppe stage
r-middle)
Geographic Categorical Static World Bank Regional
region (Sub-Saharan WDI heterogeneity
Africa, South analysis
Asia, etc.)
Target Non-hydro kWh per Annual World Primary
Variables renewable capita Development dependent
electricity Indicators variable for
generation forecasting
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Renewable Percentage Annual World Secondary
electricity of total Development penetration
share generation Indicators metric

(complementary)
Technology- | kWh/capita | Annual IEA Country Technology
specific (solar, wind, | (partial Energy Profiles | diffusion
generation geothermal, | coverage) pathway analysis
biomass
disaggregate
d)
Macroecono | GDP per US dollars Annual World Economic
mic Controls | capita Development development
(constant Indicators proxy
2015 USD)
Gross capital | % of GDP Annual World Investment
formation Development capacity
Indicators indicator
Urban % of total Annual World Demand
population population Development concentration
Indicators Proxy
Institutional | Control of Percentile Annual World Institutional
Quality corruption rank (0-100) Governance capacity
Indicators assessment
Regulatory Percentile Annual World Policy
quality rank (0-100) Governance implementation
Indicators environment
Government | Percentile Annual World State capacity
effectiveness | rank (0-100) Governance for energy
Indicators planning
RISE Policy | Renewable Binary (0/1) | Biennial World Bank Policy
Indicators energy target RISE commitment
existence signal
Renewable Ordinal (0- Biennial World Bank Ambition level
energy target | 3) RISE of national
stringency targets
Fiscal/regulat | Ordinal (0— | Biennial World Bank Financial de-
ory incentives | 3) RISE risking
mechanisms
Grid Ordinal (0- Biennial World Bank Technical
integration 3) RISE integration
framework capacity
Access to Ordinal (0— | Biennial World Bank Capital
finance 3) RISE mobilization
mechanisms infrastructure
Public sector | Ordinal (0— | Biennial World Bank Institutional
leadership 3) RISE coordination
guality
RRA Policy Continuous Irregular IRENA Gap between
Implementati | implementatio | score (0— (country- Renewables policy design
on Metrics n readiness 100) specific) Readiness and execution
Assessment
Regulatory Qualitative Irregular IRENA RRA Rule-of-law
enforcement | — quantified reports dimension for
capacity (1-5) energy sector
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Market Ordinal Irregular IRENA RRA Private sector
development | (nascent/eme reports engagement
stage rging/mature level

)
IEA Grid Continuous Irregular IEA Country Physical
Contextual infrastructure | (0-1 Energy Profiles | constraint on
Factors quality index | normalized) renewable
integration
Electricity % of Annual IEA/World Bank | Baseline
access rate population electrification
context
Fossil fuel USD per Annual IEA Energy Market
subsidy level | kWh (estimated) | Subsidy distortion metric
equivalent Database
Temporal Observation Calendar — Composite Time-series
Metadata year year (2008- dimension
2022)
Data vintage | Year of — Source Version control
year dataset documentation for
publication reproducibility

Table 2 Variable Category and Specific Indicators within sources

Variable Category | Specific Indicators Source

Target Variable Non-hydro renewable electricity World Development Indicators
generation (kWh/capita); % of total

electricity from renewables

Economic World Development Indicators

Controls

GDP per capita (constant 2015 USD);
corruption control percentile rank

Policy Features RISE renewable energy scores (6 World Bank RISE

dimensions, 0-3 scale)

Implementation RRA readiness scores (institutional, IRENA RRA reports

Metrics regulatory, market dimensions)
Contextual Resource potential indices; grid IEA Country Energy Profiles
Factors infrastructure quality scores

Preprocessing steps:

Missing value imputation using multivariate imputation by chained equations (MICE)

preserving policy-economy correlations

Temporal alignment of policy assessments (conducted biennially) with annual generation data

via forward-filling with decay weighting

Min-max normalization preserving relative policy score distances

Country-specific differencing to remove fixed effects while retaining policy shock signals
3.2. Policy Feature Engineering

Raw RISE scores require transformation to capture policy dynamics rather than static levels.

We implement three engineered features per policy dimension d [2], [28], 29]:
2934
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Policy Level:
Pd,t:R|SEscore at time

Policy Acceleration: APq+=Pqt—Pd+—1 (captures recent policy strengthening/weakening)

i Py =330, ,AP,
Policy Momentum: VP =3 2y 2 AP

(3-year moving average of acceleration)
3.3. LSTM Architecture Specification

This research study policy-integrated LSTM comprises four sequential components as

presented in Figure 1 below:

Techno-Economic Data Policy Attention Mechanism ‘

Output & Evaluation

Renewable Electricity

Forecast
- 1i

Error Analysis &
Performance Metrics

Policy Integration

Long Short-Term Memory (LSTM)

* Energy Capacity
« Cost Factors [} Regulatory Framework H

Inputibata

{ * Demand Trendsle

Policy Indicators

* RISE Indicators
* IRENA RRA
* |EA Energy Profiles

|
Attention Weights :

\ T—0 =b

Figure 1. Architecture of the policy-augmented LSTM forecasting framework

As presented in Figure 1 above the architectural configuration of the policy-augmented LSTM
forecasting framework, which processes dual input streams through specialized embedding
pathways prior to temporal integration [30]. The economic stream undergoes transformation
via a dense layer comprising 64 neurons with rectified linear unit activation to encode GDP per
capita, corruption indices, and historical generation dynamics, while the policy stream employs
an embedding layer that projects categorical RISE assessment scores across six regulatory
dimensions into continuous 32-dimensional vector representations preserving ordinal policy
relationships. These parallel streams subsequently merge through concatenation, yielding a
composite 128-dimensional feature vector at each temporal step that simultaneously captures
techno-economic conditions and policy instrumentation states [31]. The fused representation
then propagates through a dual-layer LSTM core (128 followed by 64 hidden units) augmented
with temporal attention mechanisms that dynamically compute context-sensitive weights for
individual policy dimensions based on their predictive relevance to renewable adoption
trajectories within heterogeneous national settings [2], [3], [32]. Dropout regularization at a
rate of 0.2 mitigates overfitting during sequence modeling, while dedicated gating structures
2935
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modulate information flow from policy dimensions exhibiting diminished relevance in specific
contexts such as suppressing solar incentive signals in hydro-dominated generation portfolios
before final regression through a dense output layer produces non-hydro renewable electricity
penetration forecasts in kilowatt-hours per capita.

Attention-Augmented LSTM Core:

e Two stacked LSTM layers (128 and 64 units) with dropout regularization (rate=0.2)
e Temporal attention mechanism computing policy relevance weights [2], [3],

exp(w! tanh(Vh,))
>, exp(w! tanh(Vh;))

y =

Were ht represents hidden state at time tt, V and w are trainable parameters. Separate forget
gates modulate information flow from each policy dimension. Gates trained to suppress

irrelevant policies (e.g., solar incentives in hydro-dominated systems)
Dense layer (32 units, ReLU) — final prediction layer (linear activation)
Loss function: Huber loss robust to outlier generation spikes

Training protocol: 5-fold grouped cross-validation (grouped by country to prevent data
leakage). Early stopping with patience=15 epochs based on validation MAE. Adam optimizer
(learning rate=0.001, B:=0.9, B>=0.999). Batch size=16 sequences (each sequence=5-year

window)

3.4. Baseline Models and Evaluation Metrics

ARIMA (1,1,1) Random Forest Policy-Static LSTM Policy-Dynamic LSTM

+ Univariate Model + Non-Linear . + Economic + Policy Levels + Policy Levels
+ Linear Forecast + Tree-Based I o * No Acceleration Features + Policy Acceleration (AP)

+ No Policy Input + No Temporal Memory * No Policy Momentum + Policy Momentum (3-yr MA)

« Attention Mechanism

Evaluation Metrics

+ Mean Absolute Error (MAE)

+ Root Mean Squared Error (RMSE)

» Mean Absolute Percentage Error (MAPE)
+ Directional Accuracy

+ Diebold-Mariano Test

Figure 2 The comparison of models and evaluation Matrixes
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4. Results and Discussion

This research results demonstrate that explicitly modeling policy dynamics not merely policy
existence significantly enhances forecasting accuracy in resource-constrained settings. The
23.7%
instrumentation as a first-order predictor rather than secondary contextual factor [30]. This

error reduction versus policy-agnostic LSTM models underscores policy
finding challenges conventional energy modeling paradigms that treat policy as exogenous
boundary conditions. Attention weight analysis reveals substantial heterogeneity in which
policy dimensions drive renewable adoption across national contexts as presented in Figure 2.
In Sub-Saharan African nations with nascent markets, fiscal incentives and access-to-finance
policies dominate attention weights (>60% combined) [31]. Conversely, in Southeast Asian
economies with established markets but grid constraints, grid integration requirements receive
highest weighting. This context sensitivity validates this research study architecture's attention
mechanism and cautions against one-size-fits-all policy prescriptions [32]. Impulse response
analysis as presented in Figure 3 quantifies differential latency between policy enactment and
generation impacts. Fiscal incentives manifest within 14.2 months (95% CI: 11.3-17.8),
whereas regulatory reforms requiring institutional capacity building exhibit 32.6-month lags
(95% CI: 26.4-41.1). These empirically derived lags provide critical inputs for policy

sequencing in national energy strategies [33].

Table 3 Model performance comparison across 71 developing countries (5-fold cross-

validation)
Diebold-
Mariano p-
Directional value(vs.
Model MAE(kWh/capita) | RMSE(kWh/capita) | MAPE(%) | Accuracy(%) | Proposed)
ARIMA(1,1,1) 84.3+12.7 112.6 £ 15.3 38.2+6.4 | 62.1+438 <0.001
Random Forest 76.8+9.4 1035+11.2 34.7+5.1 | 68.3+£3.9 <0.001
Standard
LSTM(economic
features only) 63.2+8.1 89.4+9.7 285+43 | 746+3.2 <0.001
Policy-Static
LSTM(policy
levels only) 58.7+7.3 82.1+8.5 26.3+3.8 | 77.2+29 0.003
Proposed Policy-
Dynamic LSTM
(levels +
acceleration +
momentum) 449+5.6 65.3+6.8 20.1+2.7 | 854+21 —
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MENA

Latin America

Country (ISO Code)
o
@
Mormalized Attention Weight

=
—
=]

0.12

COUNTRY_Q0COUNTRY_00GOUNTRY_D0E0OUNTRY_ODOOUNTRY_QDGOUNTRY_001

Policy Dimension (RISE Framework)

Figure 3 Attention weights across policy dimensions for selected countries Policy-integrated

LSTM forecasting renewable electricity penetration

Figure 3 above visualizes the context-dependent attention weights assigned to different policy
dimensions by this research LSTM model across MENA and Latin American countries,
revealing how the model dynamically prioritizes policy instruments based on national
circumstances [20]. The variation in attention patterns such as higher weights for fiscal
incentives in resource-constrained economies and grid integration in more developed contexts
emerges from the model's learned recognition that policy effectiveness is inherently contextual
rather than universal [21]. These differential attention allocations directly reflect the empirical
finding that low-income economies (like those in Sub-Saharan Africa) derive greater renewable
generation benefits from fiscal incentives, while middle-income countries face grid integration
as the binding constraint. The figure's importance lies in empirically validating this research
attention mechanism's capacity to identify context-specific policy relevance, moving beyond
one-size-fits-all approaches that have plagued previous energy forecasting models [22]. This
visualization provides actionable evidence that policy packages must be calibrated to national
institutional capacity, demonstrating why Vietnam's successful solar incentives might fail in
Mali due to differing implementation environments [23] . This figure crystallizes this research
core contribution: transforming policy from static contextual factors into dynamic, context-
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sensitive predictors that substantially improve forecasting accuracy in resource-constrained

settings.
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Figure 4 Policy shock response analysis: Impulse response functions for renewable electricity
generation following simulated policy improvements (+0.2 normalized policy score) with 95%

confidence intervals.

Figure 4 above demonstrates how identical policy interventions produce divergent renewable
generation outcomes across distinct regional contexts, revealing why one-size-fits-all policy
approaches fail in resource-constrained settings [24]. The minimal impact of fiscal incentives
in Sub-Saharan Africa (COUNTRY_000) versus the modest but sustained effect of grid
integration in Southeast Asia (COUNTRY _003) occurs because policy effectiveness depends
on pre-existing institutional capacities and binding constraints unique to each region [25].
These differential responses validate this research attention mechanism'’s ability to identify
context-specific policy relevance, demonstrating that fiscal incentives only yield results where
financing gaps not grid limitations are the primary barrier to renewable adoption. The figure's
importance lies in empirically substantiating this research core thesis that policy design must

align with national implementation capacity rather than adopting generic best practices. It
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provides actionable evidence for policymakers that interventions should be sequenced

according to a country's specific development stage and institutional maturity [26]. This

visualization crystallizes the project's transformative contribution: moving renewable

forecasting from static contextual modeling to dynamic, context-aware prediction that directly

informs evidence-based policy design in developing economies.

Table 4 Policy dimension importance ranking (SHAP values)

Most
Mean SHAP Influential
Policy Contributionto | Direction of Country Contextual
Rank | Dimension Prediction) Influence Group Interpretation
Low-income | Direct capital cost
economies reduction accelerates
Fiscal and (Sub-Saharan | project bankability
regulatory Africa, South | where financing gaps
1 | incentives 0.382 £ 0.041 Positive (B = +0.73) | Asia) constrain deployment
Middle- Technical standards
income and curtailment
economies protocols become
with >10% binding constraints
Grid integration renewable as variable renewable
2 | framework 0.317 £0.038 Positive (f = +0.68) | penetration share increases
Dedicated green
Resource- banks, concessional
constrained loans, and risk
settings with | guarantees overcome
Access to finance weak banking | institutional
3 | mechanisms 0.294 + 0.035 Positive (f = +0.65) | sectors financing barriers
Ambitious, legally
Upper- binding targets signal
Renewable middle- long-term market
energy target income stability attracting
4 | stringency 0.241 +£0.032 Positive ( = +0.59) | economies private investment
Coordinated inter-
ministerial action
Fragile states | overcomes
with bureaucratic silos in
Public sector institutional complex energy
5 | leadership 0.186 + 0.027 Positive (B = +0.47) | fragmentation | transitions
Necessary but
insufficient
condition; marginal
Positive but impact declines after
Target existence diminishing returns | Early-stage initial policy
6 | (binary) 0.124 +£0.021 (B=+0.31) adopters establishment
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Figure 5 Policy Shock Response Dynamics: Differential Implementation Lags Across

Regulatory Dimensions

Figure 5 above demonstrates why policy interventions exhibit distinct temporal response
patterns due to varying implementation requirements across regulatory dimensions, with fiscal
incentives showing rapid impact (22-month peak) while grid integration requires extended
institutional capacity building (47-month peak). The differential response trajectories emerged
because this research policy-integrated LSTM framework captured context-specific
implementation lags that conventional models overlook, revealing how policy effectiveness
depends on pre-existing institutional conditions [27]. This visualization is critically important
to this research project as it empirically validates our attention mechanism's ability to quantify
policy impact timing directly supporting this research key finding that policy sequencing must
align with national institutional maturity. The figure provides actionable evidence that
policymakers should prioritize fiscal incentives for immediate deployment acceleration before
transitioning to grid integration reforms, which require longer implementation horizons. By
quantifying these differential latency effects with confidence intervals, we transform abstract
policy concepts into concrete implementation timelines that directly inform national energy

planning [28]. This figure crystallizes this research core contribution: moving beyond static
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policy assessments to dynamic, time-sensitive forecasting that reveals when specific policy

interventions will yield measurable renewable generation outcomes in resource-constrained

settings. in Resource-Constrained Settings
Absolute Forecast Error by Income Classification Policy Integration Benefit Distribution
45
Baseline LSTM (economic features only)
70 4 Baseline LSTM (economic features only)
Bascline LSTM (economic features only) 40 1
60 4 - 35
] g
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Figure 6 Differential Impact of Policy Integration Across Development Stages: Analysis of 71
Developing Countries (2008-2022)

Figure 6 above reveals why policy integration delivers disproportionate forecasting
improvements in resource-constrained settings low-income countries exhibit the largest
absolute error reduction because their renewable adoption trajectories are primarily policy-
driven rather than market-determined, making policy dynamics the critical predictive factor
missing from conventional models. The differential error patterns emerge because financing
constraints and institutional gaps in low-income economies create stronger policy dependence,
where fiscal incentives and access-to-finance mechanisms directly determine project viability
unlike in more developed contexts [29]. This visualization's importance lies in empirically
validating this research core thesis that policy integration is not merely beneficial but essential
for accurate forecasting in the most resource-constrained settings where renewable transitions
face the greatest barriers. It provides concrete evidence that conventional techno-economic
models fail precisely where they're most needed across the 24 low-income countries in our 71-
nation sample by treating policy as static context rather than dynamic driver. The consistent
19.2-25.3% error reduction across all income groups substantiates this research claim of 23.7%
average improvement while demonstrating context-specific policy relevance that informs

targeted intervention strategies [30]. This figure crystallizes this research project's
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transformative contribution: establishing policy instrumentation as a first-order predictor that
enables evidence-based energy planning in developing economies where policy choices

determine renewable adoption success.
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Figure 7 Attention weight heterogeneity cross-correlations

Figure 7 above reveals why policy interventions exhibit heterogeneous effectiveness across
countries the attention mechanism dynamically weights policy dimensions based on national
context rather than applying uniform importance. The variation occurs because policy impacts
depend on pre-existing institutional conditions and binding constraints, with fiscal incentives
receiving high attention in resource-constrained economies (Ethiopia, Rwanda) while grid
integration dominates in more developed contexts (Vietnam, Indonesia). These patterns
validate this research core innovation of treating policy as context-sensitive predictors rather
than static features, directly addressing the literature gap regarding temporal policy dynamics
[31], [32]. The figure's importance lies in providing empirical evidence that one-size-fits-all
policy approaches fail, demonstrating why what works in Vietnam may fail in Mali due to
differential implementation capacity. It quantifies the contextual heterogeneity that
conventional forecasting models ignore, explaining this research 23.7% accuracy improvement
over policy-agnostic baselines, particularly in rapidly evolving policy environments [33], [34]
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. This visualization transforms abstract policy concepts into actionable, context-specific
implementation guidance, establishing policy instrumentation as a first-order predictor in

renewable energy forecasting for resource-constrained settings.
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Figure 8 the implementation Gap analysis and residual distribution Across implementation
capacity Tiers

Figure 8 above reveals why policy design metrics alone produce systematic forecasting
errors—countries with low RRA implementation scores (<65) exhibit positive residuals (actual
> predicted) because policy design often exceeds execution capacity, creating a systematic
under-prediction bias that conventional models ignore[35], [36]. The negative correlation
emerges because this research LSTM framework initially treated policy scores as perfect
implementation indicators without accounting for institutional gaps that prevent policy
translation into actual generation outcomes. This visualization's critical importance lies in
empirically validating this research project's core innovation: incorporating implementation
readiness metrics transforms policy from static design features into dynamic execution-aware
predictors. It explains the 23.7% error reduction achieved by this research policy-integrated
model by demonstrating how implementation capacity modulates policy effectiveness in

resource-constrained settings [37], [38]. According to this research visualization provides
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actionable evidence that forecasting accuracy requires measuring not just policy existence but
implementation capability particularly vital for low-income countries where design-execution
gaps are most pronounced. This analysis crystallizes this research project's transformative
contribution: establishing implementation capacity as the missing link between policy design

I‘M
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and renewable generation outcomes in developing economies.
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Figure 9 temporal lead-lag relationships between policy dimensions and renewable generation

outcomes.

This figure reveals why policy impacts manifest with heterogeneous temporal lags across
regulatory dimensions fiscal incentives show rapid response (12-month peak) due to immediate
financial de-risking, while grid integration requires extended institutional capacity building
(24-month peak) reflecting physical infrastructure development timelines. These differential
response patterns emerged because this research policy-integrated LSTM framework captured
context-specific implementation dynamics that conventional models ignore, demonstrating
how policy effectiveness depends on pre-existing institutional conditions and binding
constraints [39], [40], [41], [42]. The figure's importance lies in empirically validating this
research core methodological innovation: treating policy as time-evolving features rather than
static contextual inputs, which directly enabled this research 23.7% error reduction. It provides
actionable evidence for policy sequencing showing when specific interventions will yield
measurable generation outcomes addressing a critical gap in energy transition planning
literature [43], [44], [45]. By quantifying these implementation lags with statistical precision,

the visualization transforms abstract policy concepts into concrete implementation timelines
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for policymakers in resource-constrained settings. This figure crystallizes this research
project's transformative contribution: moving beyond static policy assessments to dynamic,
time-sensitive forecasting that reveals not just which policies matter, but precisely when they

will drive renewable adoption in developing economies.

Policy Stagnation
(Implementation gaps widen)

Al Status Quo Continuation
(Historical policy trajectory)

. Accelerated Policy Adoption

200 (+1.0 RISE score sustained)

Near-term
(2023-2027)

Long-term
(2028-2035)

A= 119 KWhieap |~
(+173%)

ble Generation

apita)

(KWh pi
\

100 - -

Non-Hydro Ren

50

Projection Year

Figure 10 Counterfactual Policy pathways long Term Renewable Penetration trajectories in
Resources Constrained 71-countirs Aggregate projection

Figure 10 above reveals why accelerated policy adoption yields substantially higher renewable
generation trajectories the 173% increase (119 kWh/cap) emerges from the compounding effect
of sustained policy improvements that overcome implementation gaps limiting renewable
deployment in resource-constrained settings [46], [47]. The divergent paths occur because this
research policy-integrated LSTM model captures how policy momentum accelerates
technology adoption beyond what historical trends alone would predict, particularly through
enhanced financing mechanisms and grid integration capacity. This visualization's critical
importance lies in empirically validating this research framework's ability to quantify policy
impact on long-term renewable trajectories, directly supporting this research core claim that
policy integration is a first-order predictor rather than contextual factor [48], [49], [50]. It
provides actionable evidence for policymakers that sustained policy improvements create
exponential growth opportunities that status quo or stagnation scenarios cannot achieve. The
Figure 10 above transforms abstract policy concepts into concrete, quantified outcomes,
demonstrating why the 23.7% forecasting accuracy improvement matters for real-world energy
planning decisions. This projection analysis crystallizes this research project's transformative
contribution: establishing policy as the decisive variable determining renewable energy futures
in developing economies, with profound implications for evidence-based policy design.
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6. Conclusion

This research establishes a methodological framework for integrating dynamic policy
indicators within deep learning architectures to forecast renewable electricity penetration in
developing economies. By treating policy variables as time-evolving predictive features rather
than static contextual factors, this research LSTM architecture achieves substantially improved
forecasting accuracy while generating actionable insights for policy design.
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