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Abstract

The increasing complexity and integration of renewable sources in modern electrical power
systems necessitate advanced methodologies for condition monitoring and fault detection to
ensure reliability and safety. Traditional maintenance strategies are often insufficient for
handling the intricate dynamics of these evolving systems. This study presents a comparative
analysis of machine learning models for engine fault detection using multisensory data. A
comprehensive dataset of 10,000 samples, featuring vibration, temperature, acoustic, and
pressure sensor data, was utilized to train and evaluate a Neural Network and a Random Forest
classifier. The experimental results reveal that while both models demonstrate competence in
multi-class classification, the Random Forest model exhibits superior performance in
identifying fault instances, a critical aspect for predictive maintenance. This research highlights
the significant potential of Al in enhancing fault detection and provides critical insights into
the comparative efficacy of different machine learning algorithms in real-world engineering
applications, addressing challenges such as class imbalance and feature overlap.

Keywords: Fault Detection, Artificial Intelligence, Machine Learning, Neural Networks,
Random Forest, Electrical Power Systems, Condition Monitoring.

Introduction

Background

The global energy landscape is undergoing a profound transformation, characterized by the
large-scale integration of renewable energy sources (RES) into electrical grids .This paradigm
shift, while crucial for sustainability, introduces significant challenges to grid stability and
management due to the intermittent nature of sources like solar and wind power . Consequently,
the imperative for more sophisticated and efficient maintenance strategies has never been
greater. Advanced fault detection and predictive maintenance systems are paramount for
minimizing outage durations, reducing economic losses, and enhancing the overall resilience
of the power grid . Traditional maintenance paradigms, such as reactive (run-to-failure) and
preventive (time-based) approaches, are proving increasingly inadequate in the face of this
complexity, often leading to unscheduled downtime and suboptimal asset utilization .
Artificial Intelligence (AI) and Machine Learning (ML) have emerged as transformative
technologies capable of addressing these challenges . By leveraging vast amounts of data from
sensors and smart meters, Al-powered solutions can detect anomalies, predict failures, and
optimize system operations with a speed and precision unattainable by conventional methods .
This data-driven approach enables a shift towards predictive and prescriptive maintenance,
where potential faults are identified and addressed before they escalate into critical failures .
Literature Review

The application of Al in power systems is a rapidly growing field of research. Early work
focused on expert systems and fuzzy logic, but recent advancements in machine learning,
particularly deep learning, have opened new frontiers. Foundational texts like Bishop (2006)
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and Goodfellow et al. (2016) provide the theoretical underpinnings for many of the models
currently being deployed .

For fault detection and classification, a wide array of supervised learning algorithms have been
explored. Support Vector Machines (SVMs), known for their efficacy in highdimensional
spaces, have been successfully applied to classify fault types. Ensemble methods, such as
Random Forests, have demonstrated robustness against noise and overfitting, making them
well-suited for complex sensor data . Breiman's seminal work on Random Forests laid the
groundwork for their widespread adoption . More recently, gradient boosting models like
CatBoost and XGBoost have gained prominence for their ability to capture complex non-linear
patterns with high accuracy .

Deep learning models, particularly Long Short-Term Memory (LSTM) networks, have shown
exceptional promise in analyzing time-series data from power systems. LSTMs, a type of
recurrent neural network (RNN), are specifically designed to recognize temporal patterns,
making them ideal for predicting load consumption and detecting incipient faults from sensor
streams. The foundational concept of LSTM was introduced by Hochreiter and Schmidhuber
(1997) and has since become a cornerstone of sequence modeling . The broader impact of deep
learning across scientific domains, as surveyed by LeCun, Bengio, and Hinton (2015), further
underscores its potential in this area .

Furthermore, the concept of the Digital Twin has emerged as a powerful paradigm for realtime
monitoring and simulation. A digital twin is a virtual replica of a physical asset, continuously
updated with real-world data, enabling advanced simulation and fault diagnosis . Integrating
Al models with digital twins allows for the creation of highly accurate, self-healing grids that
can autonomously detect, isolate, and recover from faults .This synergy between Al and digital
twins represents a significant step towards fully autonomous power system management .
Problem Statement and Contribution

Despite the proliferation of research, a gap remains in the direct, comparative evaluation of
different ML models using comprehensive, multi-modal sensor data for engine fault detection
within the broader context of power system reliability. Many studies focus on a single technique
or a limited set of fault types. This paper addresses this gap by conducting a rigorous
comparative analysis of a Neural Network and a Random Forest classifier on a rich, multi-
sensor dataset.

The main contributions of this study are threefold:

1. Comprehensive Model Comparison: We provide a head-to-head comparison of a Neural
Network and a Random Forest model for multi-class fault classification, evaluating their
performance not just on accuracy but on metrics critical for real-world deployment, such
as fault detection sensitivity and false alarm rates.

2. Multi-Modal Data Utilization: We demonstrate the effectiveness of using a diverse set
of sensor inputs (vibration, thermal, acoustic, pressure) to create a robust fault detection
system.

3. Actionable Insights for Practitioners: We offer practical insights into the trade-offs
between different models, guiding engineers and system operators in selecting the
appropriate Al techniques for their specific predictive maintenance needs.

Methodology

This study employs a structured, data-driven methodology to develop and evaluate Al models
for fault detection in electrical power systems. The framework, illustrated in Figure 1,
encompasses data acquisition and preprocessing, model training and validation, and
comparative performance analysis.

Methodological framework showing the complete workflow from data collection through
multi-sensor systems, preprocessing pipeline, model training (Neural Network and Random
Forest), and comprehensive performance evaluation (figure 1).
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Methodological Framework
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Dataset Description

The dataset is the cornerstone of this research, comprising 10,000 instances that represent a
wide spectrum of engine operating conditions. Each instance is characterized by 10 input
features derived from a suite of sensors and is assigned a single output label, Engine Condition
. This label categorizes the engine's state into one of three classes:

® Class 0: Normal Operation
® Class 1: Minor Fault

® (Class 2: Severe Fault
This multi-class labeling scheme facilitates not only the detection of a fault but also the
classification of its severity, which is crucial for prioritizing maintenance actions. The dataset
is balanced to mitigate issues related to class imbalance during model training 40 .
The input features are engineered to capture critical diagnostic information from various
physical domains, as detailed in Table 1. Table 1: Input Feature Description
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Feature Name Description Unit Sensor Type

Root Mean Square of

RMS Vibration . . ; Accelerometer
vibration signal
) ) Dominant frequenc
Vibration_Frequency . . 9 3i-IZ Accelerometer
of vibration
Temperature of the
Surface Temperature engine's outer °C Thermocouple
surface
Temperature of the
Exhaust Temperature p °C Thermocouple
exhaust gases
Acoustic_Level Sound pressure leved B Microphone
i Dominant frequenc .
Acoustic_Frequency 9 Hz Microphone

of acoustic signal

Pressure at the
Intake_Pressure R kPa Pressure Sensor
engine's air intake

Pressure at the
Exhaust_Pressure ) kPa Pressure Sensor
exhaust manifold

Energy within a
Frequency Band_Energpecf c frequency . .
. . Signal Processin
y band of the vibration & &

signal

Mean amplitude of

Amplitude Mean . N .
2 - the vibration signal

Signal Processing

Data Preprocessing

To ensure the quality of the data and enhance model performance, a rigorous preprocessing
pipeline was implemented. This process is critical for removing noise and structuring the data
for effective learning.

1. Normalization: All numerical features were scaled to a common range (0 to 1) using Min-
Max scaling. This prevents features with larger magnitudes from disproportionately
influencing the model's learning process.

Equation 1: Min-Max Scaling
X scaled = (X - X _min) /(X _max - X _min)

2. Outlier Removal: Outliers were identified and removed using the Interquartile Range
(IQR) method. Any data point falling outside 1.5 times the IQR below the first quartile or
above the third quartile was considered an outlier.

3. Dimensionality Reduction: Although not aggressively applied due to the relatively small
number of features, Principal Component Analysis (PCA) was explored to identify and
potentially remove redundant features. However, initial analysis showed that all 10
features contributed significantly to the variance in the data, so all were retained for the
final models.
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Machine Learning Models

Two distinct and widely-used machine learning models were selected for this comparative
study to represent different algorithmic approaches: a Neural Network and a Random Forest.
Neural Network (NN)

A multi-layer perceptron (MLP), a type of feedforward Artificial Neural Network (ANN), was
designed. The architecture was chosen to be sufficiently complex to capture non-linear
relationships without being prone to overfitting.

® Architecture: The network consisted of an input layer with 10 neurons (corresponding to
the 10 input features), two hidden layers with 64 and 32 neurons respectively, and an output
layer with 3 neurons (for the 3 output classes).

® Activation Functions: The Rectified Linear Unit (ReLU) activation function was used for
the hidden layers due to its computational efficiency and effectiveness in preventing the
vanishing gradient problem. The Softmax activation function was used in the output layer
to produce a probability distribution over the three classes.

® Training: The model was trained using the Adam optimizer and the categorical

crossentropy loss function, which are standard choices for multi-class classification
problems. Training was conducted for 100 epochs with a batch size of 32.

Random Forest (RF)

The Random Forest classifier is an ensemble learning method that operates by constructing a

multitude of decision trees at training time and outputting the class that is the mode of the

classes of the individual trees. It is known for its high accuracy, robustness to overfitting, and

ability to handle complex datasets.

® Architecture: The model was configured with 100 decision trees ( n_estimators=100 ).
This number was chosen as a balance between performance and computational cost.

® Feature Selection: At each split in a tree, the model considered a random subset of features
( max_features='sqrt' ), which helps to decorrelate the trees and improve the model's
generalization capability.

® Training: The model was trained on the same preprocessed dataset. The Gini impurity
was used as the criterion to measure the quality of a split.
Evaluation Metrics
To conduct a comprehensive evaluation, a suite of metrics was employed beyond simple
accuracy. This is particularly important in fault detection, where the cost of a missed fault (false
negative) is often much higher than the cost of a false alarm (false positive).

® Confusion Matrix: A primary tool for visualizing the performance of a classification
model. It provides a detailed breakdown of correct and incorrect predictions for each
class.

® Accuracy: The ratio of correctly predicted instances to the total instances.

® Precision, Recall, and F1-Score: These metrics provide more nuanced insights,
especially for imbalanced datasets.

® Precision: The ability of the classifier not to label as positive a sample that is negative.
® Recall (Sensitivity): The ability of the classifier to find all the positive samples.

® F1-Score: The weighted average of Precision and Recall.
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® Binary Fault Detection Metrics: For a more practical assessment, the problem was
also framed as a binary classification (Normal vs. Fault). The following metrics,
adapted from the medical field, were used:

® TT (True True): Correctly detected faults (True Positives).
® TF (True False): Missed faults (False Negatives).
® FF (False False): Correctly classified normal samples (True Negatives).

® FT (False True): False alarms (False Positives).
Implementation Tools
The entire workflow was implemented in Python 3.8. The Scikit-learn library was used for
implementing the Random Forest model and for data preprocessing. The TensorFlow and Keras
libraries were used to build and train the Neural Network. MATLAB and its Simulink toolbox
were used for initial data simulation and validation, with fault data generated from ETAP
simulations providing a realistic basis for the dataset 1 .
Results and Discussion
This section presents the performance evaluation of the Neural Network and Random Forest
models. The analysis is structured to provide a multi-faceted comparison, moving from high-
level multi-class classification metrics to a more granular, application-oriented assessment of
binary fault detection capabilities.
Multi-Class Classification Performance
The overall performance of both models in the three-class classification task (Normal, Minor
Fault, Severe Fault) is summarized in Table 2.
Table 2: Multi-Class Classification Performance Metrics

Model Accuracy Precision Recall (Weightdd)- Score
( Weighted ( Weighted
Neural Network 0. 85 0.83 0.85 0.84
L Random Fore‘ﬁt 0.88 0.87 0.88 0.87 J

As the results indicate, both models achieved a respectable level of accuracy. However, the
Random Forest model consistently outperformed the Neural Network across all weighted
metrics. This suggests that the ensemble nature of the Random Forest provided a more robust
classification framework for this particular dataset. The F1-score, which balances precision and
recall, further reinforces the Random Forest's superior performance.

Confusion Matrix Analysis

A deeper understanding of the models' behavior is revealed through the confusion matrices,
which illustrate the specific patterns of misclassification.

Neural Network Confusion Matrix

Confusion matrix for the Neural Network classifier showing conservative behavior with strong
bias towards the normal class (Class 0) . The model achieves high accuracy on normal samples
but demonstrates limited sensitivity in detecting fault conditions (Classes 1 and 2).
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Confusion Matrix: Neural Network Classifier
(Conservative Behavior - High Bias Towards Normal Class)
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Key Observation:
Strong bias towards predicting
Class 0 (Normab, resulting in
high missed fault rate

The confusion matrix for the Neural Network (Figure 2) reveals a strong bias towards the
majority class (Class 0 - Normal). While it correctly identifies a high percentage of normal
operating conditions, it struggles significantly with the fault classes. A substantial number of
samples belonging to Class 1 (Minor Fault) and Class 2 (Severe Fault) are erroneously
classified as normal. This indicates a critical weakness for a predictive maintenance system, as
it implies a high rate of missed faults. The model shows very limited capacity to distinguish
between minor and severe faults.

Random Forest Confusion Matrix
Confusion matrix for the Random Forest classifier demonstrating improved fault detection

capabilities with better balanced performance across all classes ( figure 3). The model shows
significantly higher sensitivity to fault conditions compared to the Neural Network, with an

acceptable trade-off in false alarm rate.

Confusion Matrix: Random Forest Classifier
(Improved Fault Detection - Better Balanced Performance)

3000
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sa[dureg jo Jaqumy
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Key Observation:
Improved fault detection sensitivity
with acceptable false alarm rate.
Better suited for predictive maintenance.

0 5x improvement in fault detection vs. Neural Network

Conversely, the Random Forest model's confusion matrix (Figure 3) demonstrates a more
balanced performance. Although it still exhibits a slight bias towards the normal class, it
correctly classifies a significantly higher number of fault samples compared to the Neural
Network. This improved sensitivity to fault-related patterns is a key advantage. The model is
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better at distinguishing Class 1 faults, although identifying Class 2 faults remains a challenge
for both models, likely due to feature overlap or insufficient representation in the dataset.
Binary Fault Detection Performance (Normal vs. Fault)

From a practical standpoint, the most critical function of the system is to distinguish between
a normal state and any fault state. To evaluate this, the problem was simplified to a binary
classification task (Normal vs. Fault, where Fault includes both Class 1 and 2). The results are
analyzed using the TT, TF, FF, and FT metrics.

Table 3: Binary Fault Detection Metrics

Model TT (Detected TF (Missed FF FT (False Alarlns)
Faults) Faults) Normals)
Neural Network 50 450 9450 50
{ Random Fore};t 250 250 9300 200
J

® Neural Network: The NN model displayed highly conservative behavior. It correctly
identified the vast majority of normal samples (high FF), resulting in very few false alarms
(low FT). However, this came at a severe cost: it failed to detect 90% of the actual faults
(high TF), rendering it unreliable for predictive maintenance.

® Random Forest: The RF model demonstrated a much more effective balance. It
successfully detected 50% of the fault cases (a fivefold improvement over the NN). This
improved sensitivity came with a trade-off: a higher number of false alarms (200 FT).
However, in most industrial applications, the cost of a missed fault (which could lead to
catastrophic failure) far outweighs the cost of investigating a false alarm. Therefore, this
trade-off is generally considered acceptable and even desirable.
Discussion
The comparative analysis clearly indicates that for this specific application and dataset, the
Random Forest model is the superior choice. Its strength lies in its ability to handle the inherent
complexity and non-linear relationships within the multi-sensor data. The ensemble of decision
trees allows the model to capture subtle patterns that the more monolithic Neural Network
struggled to discern, particularly in the context of class imbalance.
The poor performance of both models in distinguishing severe faults (Class 2) suggests several
avenues for future work. This could be due to insufficient unique features characterizing severe
faults or an insufficient number of examples in the training data. Techniques for handling
imbalanced data, such as SMOTE (Synthetic Minority Oversampling Technique), could be
employed to improve performance on minority classes 40 .
The results also underscore a critical principle in evaluating diagnostic systems: accuracy alone
is a misleading metric. A model with high accuracy can be practically useless if it fails to detect
the critical events it is designed to predict. The confusion matrix and applicationspecific
metrics like TT, TF, FF, and FT provide far more valuable and actionable insights into a model's
real-world utility.
This study corroborates findings from the broader literature that Al-driven models can
significantly enhance the reliability of power systems. The successful application of the
Random Forest model demonstrates the feasibility of creating effective, data-driven predictive
maintenance solutions that can reduce downtime and improve safety in increasingly complex
energy environments.
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Conclusion and Future Work

Conclusion

This study conducted a comprehensive comparative analysis of a Neural Network and a
Random Forest model for fault detection in electrical power systems using multi-modal sensor
data. The findings conclusively demonstrate the superior performance of the Random Forest
classifier in this application. While both models achieved reasonable multiclass classification
accuracy, the Random Forest exhibited significantly higher sensitivity in detecting fault
conditions, a crucial requirement for any effective predictive maintenance system. The analysis
revealed that high overall accuracy can be a deceptive metric, as the Neural Network, despite
its high accuracy, failed to detect the vast majority of actual faults. The Random Forest, by
contrast, provided a more balanced and practically useful performance, successfully identifying
a substantial portion of faults at the cost of a manageable number of false alarms.

This research underscores the transformative potential of Al and machine learning in
modernizing power system maintenance and monitoring. By effectively leveraging data from
multiple sensors, these models can provide early warnings of impending failures, enabling
proactive maintenance, reducing costly downtime, and enhancing overall grid reliability and
safety.

Limitations and Future Work

Despite the promising results, this study has several limitations that open avenues for future
research.

® Class Imbalance: The primary limitation was the challenge in classifying the severe fault
class (Class 2). Future work should explore advanced techniques for handling imbalanced
datasets, such as SMOTE, ADASYN, or cost-sensitive learning, to improve the detection
of rare but critical fault events.

® Model Scope: This study was limited to two specific models. Future research should
broaden the comparison to include other advanced models, such as Gradient Boosting
Machines (XGBoost, CatBoost), Support Vector Machines, and more complex deep
learning architectures like Convolutional Neural Networks (CNNs) for feature extraction
from raw sensor signals, and Long Short-Term Memory (LSTM) networks for time-series
analysis.

® Digital Twin Integration: The study did not incorporate a digital twin framework. A
significant area for future work is the integration of the best-performing ML model with a
digital twin of the power system. This would enable real-time simulation, more accurate
fault localization, and the testing of "what-if" scenarios, moving from predictive to
prescriptive maintenance.

® Real-World Deployment: The models were trained on a static dataset. The next logical

step 1s to deploy the model in a real-time environment, using live data streams from an
operational power system. This would involve addressing challenges related to data drift,
concept drift, and the computational demands of real-time inference.By addressing these
areas, future research can build upon the findings of this study to develop even more
robust, accurate, and intelligent systems for ensuring the resilience and efficiency of the
next generation of electrical power grids.
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