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Abstract 

The increasing complexity and integration of renewable sources in modern electrical power 

systems necessitate advanced methodologies for condition monitoring and fault detection to 

ensure reliability and safety. Traditional maintenance strategies are often insufficient for 

handling the intricate dynamics of these evolving systems. This study presents a comparative 

analysis of machine learning models for engine fault detection using multisensory data. A 

comprehensive dataset of 10,000 samples, featuring vibration, temperature, acoustic, and 

pressure sensor data, was utilized to train and evaluate a Neural Network and a Random Forest 

classifier. The experimental results reveal that while both models demonstrate competence in 

multi-class classification, the Random Forest model exhibits superior performance in 

identifying fault instances, a critical aspect for predictive maintenance. This research highlights 

the significant potential of AI in enhancing fault detection and provides critical insights into 

the comparative efficacy of different machine learning algorithms in real-world engineering 

applications, addressing challenges such as class imbalance and feature overlap. 

Keywords: Fault Detection, Artificial Intelligence, Machine Learning, Neural Networks, 

Random Forest, Electrical Power Systems, Condition Monitoring. 

Introduction 

Background 

The global energy landscape is undergoing a profound transformation, characterized by the 

large-scale integration of renewable energy sources (RES) into electrical grids .This paradigm 

shift, while crucial for sustainability, introduces significant challenges to grid stability and 

management due to the intermittent nature of sources like solar and wind power . Consequently, 

the imperative for more sophisticated and efficient maintenance strategies has never been 

greater. Advanced fault detection and predictive maintenance systems are paramount for 

minimizing outage durations, reducing economic losses, and enhancing the overall resilience 

of the power grid . Traditional maintenance paradigms, such as reactive (run-to-failure) and 

preventive (time-based) approaches, are proving increasingly inadequate in the face of this 

complexity, often leading to unscheduled downtime and suboptimal asset utilization  . 

Artificial Intelligence (AI) and Machine Learning (ML) have emerged as transformative 

technologies capable of addressing these challenges . By leveraging vast amounts of data from 

sensors and smart meters, AI-powered solutions can detect anomalies, predict failures, and 

optimize system operations with a speed and precision unattainable by conventional methods . 

This data-driven approach enables a shift towards predictive and prescriptive maintenance, 

where potential faults are identified and addressed before they escalate into critical failures . 

Literature Review 

The application of AI in power systems is a rapidly growing field of research. Early work 

focused on expert systems and fuzzy logic, but recent advancements in machine learning, 

particularly deep learning, have opened new frontiers. Foundational texts like Bishop (2006) 
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and Goodfellow et al. (2016) provide the theoretical underpinnings for many of the models 

currently being deployed . 

For fault detection and classification, a wide array of supervised learning algorithms have been 

explored. Support Vector Machines (SVMs), known for their efficacy in highdimensional 

spaces, have been successfully applied to classify fault types. Ensemble methods, such as 

Random Forests, have demonstrated robustness against noise and overfitting, making them 

well-suited for complex sensor data . Breiman's seminal work on Random Forests laid the 

groundwork for their widespread adoption . More recently, gradient boosting models like 

CatBoost and XGBoost have gained prominence for their ability to capture complex non-linear 

patterns with high accuracy  . 

Deep learning models, particularly Long Short-Term Memory (LSTM) networks, have shown 

exceptional promise in analyzing time-series data from power systems. LSTMs, a type of 

recurrent neural network (RNN), are specifically designed to recognize temporal patterns, 

making them ideal for predicting load consumption and detecting incipient faults from sensor 

streams. The foundational concept of LSTM was introduced by Hochreiter and Schmidhuber 

(1997) and has since become a cornerstone of sequence modeling . The broader impact of deep 

learning across scientific domains, as surveyed by LeCun, Bengio, and Hinton (2015), further 

underscores its potential in this area . 

Furthermore, the concept of the Digital Twin has emerged as a powerful paradigm for realtime 

monitoring and simulation. A digital twin is a virtual replica of a physical asset, continuously 

updated with real-world data, enabling advanced simulation and fault diagnosis . Integrating 

AI models with digital twins allows for the creation of highly accurate, self-healing grids that 

can autonomously detect, isolate, and recover from faults .This synergy between AI and digital 

twins represents a significant step towards fully autonomous power system management . 

Problem Statement and Contribution 

Despite the proliferation of research, a gap remains in the direct, comparative evaluation of 

different ML models using comprehensive, multi-modal sensor data for engine fault detection 

within the broader context of power system reliability. Many studies focus on a single technique 

or a limited set of fault types. This paper addresses this gap by conducting a rigorous 

comparative analysis of a Neural Network and a Random Forest classifier on a rich, multi-

sensor dataset. 

The main contributions of this study are threefold: 

1. Comprehensive Model Comparison: We provide a head-to-head comparison of a Neural 

Network and a Random Forest model for multi-class fault classification, evaluating their 

performance not just on accuracy but on metrics critical for real-world deployment, such 

as fault detection sensitivity and false alarm rates. 

2. Multi-Modal Data Utilization: We demonstrate the effectiveness of using a diverse set 

of sensor inputs (vibration, thermal, acoustic, pressure) to create a robust fault detection 

system. 

3. Actionable Insights for Practitioners: We offer practical insights into the trade-offs 

between different models, guiding engineers and system operators in selecting the 

appropriate AI techniques for their specific predictive maintenance needs. 

Methodology 

This study employs a structured, data-driven methodology to develop and evaluate AI models 

for fault detection in electrical power systems. The framework, illustrated in Figure 1, 

encompasses data acquisition and preprocessing, model training and validation, and 

comparative performance analysis. 

 Methodological framework showing the complete workflow from data collection through 

multi-sensor systems, preprocessing pipeline, model training (Neural Network and Random 

Forest), and comprehensive performance evaluation (figure 1). 
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Dataset Description 

The dataset is the cornerstone of this research, comprising 10,000 instances that represent a 

wide spectrum of engine operating conditions. Each instance is characterized by 10 input 

features derived from a suite of sensors and is assigned a single output label, Engine_Condition 

. This label categorizes the engine's state into one of three classes: 

• Class 0: Normal Operation 

• Class 1: Minor Fault 

• Class 2: Severe Fault 

This multi-class labeling scheme facilitates not only the detection of a fault but also the 

classification of its severity, which is crucial for prioritizing maintenance actions. The dataset 

is balanced to mitigate issues related to class imbalance during model training 40 . 

The input features are engineered to capture critical diagnostic information from various 

physical domains, as detailed in Table 1. Table 1: Input Feature Description 
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Data Preprocessing 

To ensure the quality of the data and enhance model performance, a rigorous preprocessing 

pipeline was implemented. This process is critical for removing noise and structuring the data 

for effective learning. 

1. Normalization: All numerical features were scaled to a common range (0 to 1) using Min-

Max scaling. This prevents features with larger magnitudes from disproportionately 

influencing the model's learning process. 

Equation 1: Min-Max Scaling 

X_scaled = (X - X_min) / (X_max - X_min) 

2. Outlier Removal: Outliers were identified and removed using the Interquartile Range 

(IQR) method. Any data point falling outside 1.5 times the IQR below the first quartile or 

above the third quartile was considered an outlier. 

3. Dimensionality Reduction: Although not aggressively applied due to the relatively small 

number of features, Principal Component Analysis (PCA) was explored to identify and 

potentially remove redundant features. However, initial analysis showed that all 10 

features contributed significantly to the variance in the data, so all were retained for the 

final models. 
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Machine Learning Models 

Two distinct and widely-used machine learning models were selected for this comparative 

study to represent different algorithmic approaches: a Neural Network and a Random Forest. 

Neural Network (NN) 

A multi-layer perceptron (MLP), a type of feedforward Artificial Neural Network (ANN), was 

designed. The architecture was chosen to be sufficiently complex to capture non-linear 

relationships without being prone to overfitting. 

• Architecture: The network consisted of an input layer with 10 neurons (corresponding to 

the 10 input features), two hidden layers with 64 and 32 neurons respectively, and an output 

layer with 3 neurons (for the 3 output classes). 

• Activation Functions: The Rectified Linear Unit (ReLU) activation function was used for 

the hidden layers due to its computational efficiency and effectiveness in preventing the 

vanishing gradient problem. The Softmax activation function was used in the output layer 

to produce a probability distribution over the three classes. 

• Training: The model was trained using the Adam optimizer and the categorical 

crossentropy loss function, which are standard choices for multi-class classification 

problems. Training was conducted for 100 epochs with a batch size of 32. 

Random Forest (RF) 

The Random Forest classifier is an ensemble learning method that operates by constructing a 

multitude of decision trees at training time and outputting the class that is the mode of the 

classes of the individual trees. It is known for its high accuracy, robustness to overfitting, and 

ability to handle complex datasets. 

• Architecture: The model was configured with 100 decision trees ( n_estimators=100 ).  

This number was chosen as a balance between performance and computational cost. 

• Feature Selection: At each split in a tree, the model considered a random subset of features  

( max_features='sqrt' ), which helps to decorrelate the trees and improve the model's 

generalization capability. 

• Training: The model was trained on the same preprocessed dataset. The Gini impurity 

was used as the criterion to measure the quality of a split. 

Evaluation Metrics 

To conduct a comprehensive evaluation, a suite of metrics was employed beyond simple 

accuracy. This is particularly important in fault detection, where the cost of a missed fault (false 

negative) is often much higher than the cost of a false alarm (false positive). 

• Confusion Matrix: A primary tool for visualizing the performance of a classification 

model. It provides a detailed breakdown of correct and incorrect predictions for each 

class. 

• Accuracy: The ratio of correctly predicted instances to the total instances. 

• Precision, Recall, and F1-Score: These metrics provide more nuanced insights, 

especially for imbalanced datasets. 

• Precision: The ability of the classifier not to label as positive a sample that is negative. 

• Recall (Sensitivity): The ability of the classifier to find all the positive samples. 

• F1-Score: The weighted average of Precision and Recall. 
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• Binary Fault Detection Metrics: For a more practical assessment, the problem was 

also framed as a binary classification (Normal vs. Fault). The following metrics, 

adapted from the medical field, were used: 

• TT (True True): Correctly detected faults (True Positives). 

• TF (True False): Missed faults (False Negatives). 

• FF (False False): Correctly classified normal samples (True Negatives). 

• FT (False True): False alarms (False Positives). 

Implementation Tools 

The entire workflow was implemented in Python 3.8. The Scikit-learn library was used for 

implementing the Random Forest model and for data preprocessing. The TensorFlow and Keras 

libraries were used to build and train the Neural Network. MATLAB and its Simulink toolbox 

were used for initial data simulation and validation, with fault data generated from ETAP 

simulations providing a realistic basis for the dataset 1 . 

Results and Discussion 

This section presents the performance evaluation of the Neural Network and Random Forest 

models. The analysis is structured to provide a multi-faceted comparison, moving from high-

level multi-class classification metrics to a more granular, application-oriented assessment of 

binary fault detection capabilities. 

Multi-Class Classification Performance 

The overall performance of both models in the three-class classification task (Normal, Minor 

Fault, Severe Fault) is summarized in Table 2. 

Table 2: Multi-Class Classification Performance Metrics 

 

 
As the results indicate, both models achieved a respectable level of accuracy. However, the 

Random Forest model consistently outperformed the Neural Network across all weighted 

metrics. This suggests that the ensemble nature of the Random Forest provided a more robust 

classification framework for this particular dataset. The F1-score, which balances precision and 

recall, further reinforces the Random Forest's superior performance. 

Confusion Matrix Analysis 

A deeper understanding of the models' behavior is revealed through the confusion matrices, 

which illustrate the specific patterns of misclassification. 

Neural Network Confusion Matrix 

 Confusion matrix for the Neural Network classifier showing conservative behavior with strong 

bias towards the normal class (Class 0)  . The model achieves high accuracy on normal samples 

but demonstrates limited sensitivity in detecting fault conditions (Classes 1 and 2). 
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The confusion matrix for the Neural Network (Figure 2) reveals a strong bias towards the 

majority class (Class 0 - Normal). While it correctly identifies a high percentage of normal 

operating conditions, it struggles significantly with the fault classes. A substantial number of 

samples belonging to Class 1 (Minor Fault) and Class 2 (Severe Fault) are erroneously 

classified as normal. This indicates a critical weakness for a predictive maintenance system, as 

it implies a high rate of missed faults. The model shows very limited capacity to distinguish 

between minor and severe faults. 

Random Forest Confusion Matrix 

Confusion matrix for the Random Forest classifier demonstrating improved fault detection 

capabilities with better balanced performance across all classes ( figure 3). The model shows 

significantly higher sensitivity to fault conditions compared to the Neural Network, with an 

acceptable trade-off in false alarm rate. 

 
Conversely, the Random Forest model's confusion matrix (Figure 3) demonstrates a more 

balanced performance. Although it still exhibits a slight bias towards the normal class, it 

correctly classifies a significantly higher number of fault samples compared to the Neural 

Network. This improved sensitivity to fault-related patterns is a key advantage. The model is 



38Salah Abdulla 

1890 

better at distinguishing Class 1 faults, although identifying Class 2 faults remains a challenge 

for both models, likely due to feature overlap or insufficient representation in the dataset. 

Binary Fault Detection Performance (Normal vs. Fault) 

From a practical standpoint, the most critical function of the system is to distinguish between 

a normal state and any fault state. To evaluate this, the problem was simplified to a binary 

classification task (Normal vs. Fault, where Fault includes both Class 1 and 2). The results are 

analyzed using the TT, TF, FF, and FT metrics. 

Table 3: Binary Fault Detection Metrics 

 

• Neural Network: The NN model displayed highly conservative behavior. It correctly 

identified the vast majority of normal samples (high FF), resulting in very few false alarms 

(low FT). However, this came at a severe cost: it failed to detect 90% of the actual faults 

(high TF), rendering it unreliable for predictive maintenance. 

• Random Forest: The RF model demonstrated a much more effective balance. It 

successfully detected 50% of the fault cases (a fivefold improvement over the NN). This 

improved sensitivity came with a trade-off: a higher number of false alarms (200 FT). 

However, in most industrial applications, the cost of a missed fault (which could lead to 

catastrophic failure) far outweighs the cost of investigating a false alarm. Therefore, this 

trade-off is generally considered acceptable and even desirable. 

Discussion 

The comparative analysis clearly indicates that for this specific application and dataset, the 

Random Forest model is the superior choice. Its strength lies in its ability to handle the inherent 

complexity and non-linear relationships within the multi-sensor data. The ensemble of decision 

trees allows the model to capture subtle patterns that the more monolithic Neural Network 

struggled to discern, particularly in the context of class imbalance. 

The poor performance of both models in distinguishing severe faults (Class 2) suggests several 

avenues for future work. This could be due to insufficient unique features characterizing severe 

faults or an insufficient number of examples in the training data. Techniques for handling 

imbalanced data, such as SMOTE (Synthetic Minority Oversampling Technique), could be 

employed to improve performance on minority classes 40 . 

The results also underscore a critical principle in evaluating diagnostic systems: accuracy alone 

is a misleading metric. A model with high accuracy can be practically useless if it fails to detect 

the critical events it is designed to predict. The confusion matrix and applicationspecific 

metrics like TT, TF, FF, and FT provide far more valuable and actionable insights into a model's 

real-world utility. 

This study corroborates findings from the broader literature that AI-driven models can 

significantly enhance the reliability of power systems. The successful application of the 

Random Forest model demonstrates the feasibility of creating effective, data-driven predictive 

maintenance solutions that can reduce downtime and improve safety in increasingly complex 

energy environments. 
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Conclusion and Future Work 

Conclusion 

This study conducted a comprehensive comparative analysis of a Neural Network and a 

Random Forest model for fault detection in electrical power systems using multi-modal sensor 

data. The findings conclusively demonstrate the superior performance of the Random Forest 

classifier in this application. While both models achieved reasonable multiclass classification 

accuracy, the Random Forest exhibited significantly higher sensitivity in detecting fault 

conditions, a crucial requirement for any effective predictive maintenance system. The analysis 

revealed that high overall accuracy can be a deceptive metric, as the Neural Network, despite 

its high accuracy, failed to detect the vast majority of actual faults. The Random Forest, by 

contrast, provided a more balanced and practically useful performance, successfully identifying 

a substantial portion of faults at the cost of a manageable number of false alarms. 

This research underscores the transformative potential of AI and machine learning in 

modernizing power system maintenance and monitoring. By effectively leveraging data from 

multiple sensors, these models can provide early warnings of impending failures, enabling 

proactive maintenance, reducing costly downtime, and enhancing overall grid reliability and 

safety. 

Limitations and Future Work 

Despite the promising results, this study has several limitations that open avenues for future 

research. 

• Class Imbalance: The primary limitation was the challenge in classifying the severe fault 

class (Class 2). Future work should explore advanced techniques for handling imbalanced 

datasets, such as SMOTE, ADASYN, or cost-sensitive learning, to improve the detection 

of rare but critical fault events. 

• Model Scope: This study was limited to two specific models. Future research should 

broaden the comparison to include other advanced models, such as Gradient Boosting 

Machines (XGBoost, CatBoost), Support Vector Machines, and more complex deep 

learning architectures like Convolutional Neural Networks (CNNs) for feature extraction 

from raw sensor signals, and Long Short-Term Memory (LSTM) networks for time-series 

analysis. 

• Digital Twin Integration: The study did not incorporate a digital twin framework. A 

significant area for future work is the integration of the best-performing ML model with a 

digital twin of the power system. This would enable real-time simulation, more accurate 

fault localization, and the testing of "what-if" scenarios, moving from predictive to 

prescriptive maintenance. 

• Real-World Deployment: The models were trained on a static dataset. The next logical 

step is to deploy the model in a real-time environment, using live data streams from an 

operational power system. This would involve addressing challenges related to data drift, 

concept drift, and the computational demands of real-time inference.By addressing these 

areas, future research can build upon the findings of this study to develop even more 

robust, accurate, and intelligent systems for ensuring the resilience and efficiency of the 

next generation of electrical power grids. 
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