

Contra $p^*g\alpha$ - cleavability

Ghazeel A. M. Jallalh

Department of Mathematics

Education Faculty - Sirte University , Libya.

ghaz@su.edu.ly

تاريخ الاستلام: 2025/12/14 - تاريخ المراجعة: 2025/12/22 - تاريخ القبول: 2025/12/22 - تاريخ للنشر: 2026 /12/22

Abstract.

K.Geetha & M.Vigneshwaran (2016) [5] introduced and studied the concept of contra $p^*g\alpha$ continuous function and strongly $p^*g\alpha$ closed function.

In this paper ,we used these functions to study the concept of cleavability over these special topological spaces (P ultra Hausdorff , P-normal , Strongly compact , P-Ts , strongly $p^*g\alpha$ -closed) spaces.as following :

- 1- If \mathcal{P} is a class of topological spaces with certain properties and if X is cleavable over \mathcal{P} ,then $X \notin \mathcal{P}$.
- 2- If \mathcal{P} is a class of topological spaces with certain properties and if Y is cleavable over \mathcal{P} then $Y \notin \mathcal{P}$.
- 3- If \mathcal{P} is a class of topological spaces with certain properties and if Y is cleavable over \mathcal{P} then $X \in \mathcal{P}$.

1-Introduction

Arhngel' Skii. A (1985) [1]introduced different types of cleavability(originally named splitability) as following : A topological space X is said to be cleavable over a class of spaces \mathcal{P} if for $A \subset X$ there exists a continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1}f(A) = A$, $f(X)=Y$. Throughout this paper (X, τ) , (Y, σ) will always denote the topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let A be a Subset of (x, τ) , $cl(A)$ and

$Int(A)$ denote the closure and interior of A , subset of (x, τ) , $cl(A)$ and $Int(A)$ denote the closure and interior of A , A subset A of a space (X, τ) is called regular open (resp. regular closed) if $A = int(cl(A))$ (resp. $A = cl(int(A))$). respectively.

Keywords: contra $p^*g\alpha$ -cleavability, $p^*g\alpha$ - cleavability, contra- $p^*g\alpha$ - point wise cleavability , contra- $p^*g\alpha$ - absolutely cleavable, $p^*g\alpha$ -irresolute cleavability.

2. Preliminaries:

Now we recall some definitions which we needed in this paper

Definition 2.1.[4]

Let (X, τ) be a topological space. A subset A of the space X is said to be Preopen if $A \subseteq \text{int}(\text{cl}(A))$ and preclosed if $\text{cl}(\text{int}(A)) \subseteq A$.

The intersection of all preclosed sets containing A is called preclosure of A and is denoted by $\text{pcl}(A)$.

Definition 2.2

Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be

$p^*g\alpha$ -closed .[5] if $\text{pcl}(A) \subseteq (U)$ whenever $A \subseteq U$ and U is $*g\alpha$ -open in X . The complements is called open sets.

Definition 2.3.

A topological space (X, τ) is called A P-Ts space [3] if every $p^*g\alpha$ -closed set is closed.

Theorem 2.1. [5]

Let (X, τ) be a topological space :

- (1) A subset A of (X, τ) is regular open $\Leftrightarrow A$ is opened $p^*g\alpha$ closed.
- (2) A subset A of (X, τ) is open and regular closed then A is $p^*g\alpha$ closed.

Theorem 2.2. [3]

Every closed set in a topological pace (X, τ) is $p^*g\alpha$ -closed.

Definition 2.4

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called contra- $p^*g\alpha$ -continuous if $f^{-1}(V)$ is $p^*g\alpha$ -open (respectively $p^*g\alpha$ closed) in (X, τ) for every closed (respectively open) set V in (Y, σ) .

Example 2.1. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra- $p^*g\alpha$ continuous function, since for the closed (respectively open) set $V = \{b\}$ in (Y, σ) , $f^{-1}(V) = \{b\}$ is p^*g - open (respectively $p^*g\alpha$ closed) in (X, τ) .

Example2.2

Let $X = \{1, 2, 3\} = Y$, $\tau = \{\emptyset, \{1\}, X\}$ and $\sigma = \{\emptyset, \{1\}, \{2, 3\}, Y\}$. Define

$f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(1) = 2$; $f(2) = 3$ and $f(3) = 1$. Then f is contra $p^*g\alpha$ continuous function, since for the closed (respectively open) set $V = \{2\}$ in (Y, σ) , $f^{-1}(V) = \{2\}$ is $p^*g\alpha$ -open (respectively $p^*g\alpha$ closed) in (X, τ) .

Definition2.5[5]

A function $f: X \rightarrow Y$ from a topological space X into a topological space Y is said to be $p^*g\alpha$ -irresolute if $f^{-1}(V)$ is $p^*g\alpha$ -closed in X for every $p^*g\alpha$ -closed set V in Y .

3- contra- $p^*g\alpha$ -cleavability

Definition 3.1

A topological space X is said to be a contra- $p^*g\alpha$ (resp. contra- $p^*g\alpha$ irresolute) cleavable over a class of spaces \mathcal{P} , if for any subset A of X , there exists a contra- $p^*g\alpha$ - (resp. contra- $p^*g\alpha$ irresolute) –continuous mapping

$f : X \rightarrow Y$, such that $f^{-1}f(A) = A$ and $f(X) = Y$.

Definition 3.2

A topological spaces is said to be a contra- $p^*g\alpha$ -pointwise cleavable over a class of spaces \mathcal{P} . if for every point $x \in X$ there exists an injective contra- $p^*g\alpha$ -continuous mapping $f : X \rightarrow Y$, such that $f^{-1}f\{x\} = \{x\}$.

Remark 3.1

By a contra- $p^*g\alpha$ - pointwise cleavable ,we mean that a contra- $p^*g\alpha$ - continuous function $f : X \rightarrow Y \in \mathcal{P}$ is an injective and a contra $p^*g\alpha$ continuous.

Definition3.3

A topological space X is said to be a contra- $p^*g\alpha$ - absolutely cleavable over a class of spaces \mathcal{P} , If for any subset A of X , there exists an injective contra- $p^*g\alpha$ continuous mapping $f : X \rightarrow Y$, such that $f^{-1}f(A) = A$.

Remark 3.2

If f is an open (.closed) a contra- – $p^*g\alpha$ - continuous mapping , we mean that is an open (.closed) contra- $p^*g\alpha$ absolutely cleavable over \mathcal{P} . X

Definition 3.4[5]

A topological space (X, τ) is said to be P-Hausdorff if for each pair of distinct points x and y in X there exist disjoint $p^*g\alpha$ open sets A and B of x and y respectively.

Definition 3.5 [6]

A topological space X is called:

- (a) ultra Hausdroff space if every pair of distinct points of x and y in X there exist disjoint clopen sets U and V in X containing x and y respectively.
- (b) ultra-normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Proposition 3.1

Let X be a contra- $p^*g\alpha$ - pointwise cleavable over class of ultra Hausdroff space \mathcal{P} , then X is P- Hausdorff space .

Proof:

Suppose $x \in X$, then there exists an ultra Hausdorff space Y and a contra- $p^*g\alpha$ - continuous mapping $f: X \rightarrow Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in Y$ with $x \neq y$,we have $f(x) \neq f(y)$. Since Y is an ultraHausdorff , so there exists two clopen sets G and H such that $f(x) \in G$,

$f(y) \in H$ and $G \cap H = \emptyset$, then $f^{-1}f(x) \in f^{-1}(G)$, $f^{-1}f(y) \in f^{-1}(H)$, this implies that $x \in f^{-1}(G)$, $y \in f^{-1}(H)$, since f is a contra- $p^*g\alpha$ - continuous , so $f^{-1}(G)$, $f^{-1}(H)$ are $p^*g\alpha$ open sets of X and
 $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$. then X is P-Hausdorff space

Definition 3.6[5]

A topological space (X, τ) is called P-normal if each pair of nonempty disjoint closed sets can be separated by disjoint $p^*g\alpha$ -open sets.

Proposition 3.2

Let X be a closed contra- $p^*g\alpha$ absolutely cleavable over a class of ultra normal spaces \mathcal{P} , then X is p - normal.

Proof:

Suppose F_1, F_2 be two non-empty disjoint closed sets of X , then there exists an injective closed a contra- $p^*g\alpha$ - continuous mapping $f:X \rightarrow Y \in \mathcal{P}$ such that $f^{-1}f(F_1)=F_1, f^{-1}f(F_2)=F_2$. Since f is closed and injective, then $f(F_1), f(F_2)$ are two non-empty disjoint closed sets of Y , since Y is an ultra normal space, so there exist two clopen sets E_1, E_2 such that $f(F_1) \subset E_1, f(F_2) \subset E_2$ and $E_1 \cap E_2 = \emptyset$, then $f^{-1}f(F_1) \subset f^{-1}(E_1), f^{-1}f(F_2) \subset f^{-1}(E_2)$, this implies that $f^{-1}(E_1), f^{-1}(E_2)$ are contra- $p^*g\alpha$ open sets of X and $f^{-1}(E_1) \cap f^{-1}(E_2) = f^{-1}(E_1 \cap E_2) = f^{-1}(\emptyset) = \emptyset$. Hence X is P - normal space.

Definition 3.7

A topological space (X, τ) is said to be $p^*g\alpha$ -connected if X cannot be written as the disjoint union of two non-empty $p^*g\alpha$ -open sets.

Proposition 3.3

Let X be $p^*g\alpha$ connected spaces which is a contra- cleavable over a class of \mathcal{P} , then Y is conncted .

Proof:

Suppose

Y is not connected space, then $Y = U \cup V$, where U, V are disjoint non empty clopen sets of Y , then there exists an injective contra- continuous mapping $f:X \rightarrow Y \in \mathcal{P}$ such that $f^{-1}f\{f^{-1}(U)\} = f^{-1}(U)$, $f^{-1}f\{f^{-1}(V)\} = f^{-1}(V)$, since $Y = U \cup V$, then $f^{-1}(Y) = f^{-1}(U \cup V)$ this implies that

$X = f^{-1}(U) \cup f^{-1}(V)$, since f is a contra - $p^*g\alpha$ -continuous function, then $f^{-1}(U), f^{-1}(V)$ are non empty disjoint $p^*g\alpha$ -open sets in X , which contradicts that X is $p^*g\alpha$ connected, thee for Y is conncted .

Definition 3.8[5]

A topological space (X, τ) is called Strongly compact if every preopen cover of X has a finite sub cover.

Theorem 3.2. [5]

Every strongly $p^*g\alpha$ -closed space (X, τ) is a compact S-closed space.

Proposition3.4

Let X be a strongly compact is a contra- $p^*g\alpha$ a closed cleavable space over a class of spaces \mathcal{P} , then Y is compact space.

Proof :

Suppose $\{V_i\}_{i \in I}$ be preopen open cover of Y , and there exists a contra- $p^*g\alpha$ continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that $f^{-1}f\{f^{-1}\{V_i\}_{i \in I}\} = f^{-1}\{V_i\}_{i \in I}$, since f is contra- $p^*g\alpha$ -continuous , then $f^{-1}\{V_i\}_{i \in I}$ is a $p^*g\alpha$ -closed cover of X .

but X is strongly $p^*g\alpha$ -closed , so there exists a finite sub cover

$\{f^{-1}(V_1), \dots, f^{-1}(V_n)\}$ of X , such that

$X \subset \bigcup_{i=1}^n \{f^{-1}(V_i)\}$,since $ff^{-1}(V_i) = V_i$, So $\{V_1, \dots, V_n\}$ is a finite open

Sub cover of Y . Therefore Y is a compact.

Definition 3.8

A topological space (X, τ) is called $p^*g\alpha$ -compact if every $p^*g\alpha$ -open cover of X has a finite subcover.

Proposition3.5

Let X be $p^*g\alpha$ –compact is a contra- $p^*g\alpha$ a cleavable over a class of spaces \mathcal{P} , then Y is strongly S-closed.

Proof:

Suppose $\{V_i\}_{i \in I}$ be an closed cover of Y , since X is a contra- $p^*g\alpha$ cleavable, so there exists a contra $p^*g\alpha$ continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that $f^{-1}f\{f^{-1}\{V_i\}_{i \in I}\} = f^{-1}\{V_i\}_{i \in I}$, since f is contra- $p^*g\alpha$ -continuous , then

$f^{-1}\{V_i\}_{i \in I}$ is a $p^*g\alpha$ -open cover of X . but X is $p^*g\alpha$ -compact, so there exists a finite sub cover $\{f^{-1}(V_1), \dots, f^{-1}(V_n)\}$ of X , such that $X \subset \bigcup_{i=1}^n \{f^{-1}(V_i)\}$, since $ff^{-1}(V_i) = V_i$, So $\{V_1, \dots, V_n\}$ is a finite sub sub cover of Y . Therefore Y is strongly S-closed.

Definition 3.9[2]

A topological space (X, τ) is said to be P-Ts space if every $p^*g\alpha$ -closed set is closed.

Proposition 3.6

Let X be a $p^*g\alpha$ -compact space is a contra- $p^*g\alpha$ -cleavable space over a class of \mathcal{P} , then Y is strongly $p^*g\alpha$ -closed.

Proof :

Suppose $\{V_i\}_{i \in I}$ be any $p^*g\alpha$ -closed cover of Y , Since Y is P-Ts space, then

exists a contra- $p^*g\alpha$ continuous mapping $f: X \rightarrow Y \in \mathcal{P}$, such that

$f^{-1}f\{f^{-1}\{V_i\}_{i \in I}\} = f^{-1}\{V_i\}_{i \in I}$, since f is contra- $p^*g\alpha$ -continuous,

then $f^{-1}\{V_i\}_{i \in I}$ is a $p^*g\alpha$ -open cover of X . since X is $p^*g\alpha$ -compact, so

there exists a finite open sub cover $\{f^{-1}(V_1), \dots, f^{-1}(V_n)\}$ of X , such that

$X \subset \bigcup_{i=1}^n \{f^{-1}(V_i)\}$, since $ff^{-1}(V_i) = V_i$, So $\{V_1, \dots, V_n\}$ is a finite sub

cover of Y . Then Y is strongly $p^*g\alpha$ -closed.

Definition 3.10[5]

A topological space (X, τ) is said to be strongly $p^*g\alpha$ -closed if every $p^*g\alpha$ -closed cover of X has a finite sub cover.

Proposition 3.7

Let X be a strongly $p^*g\alpha$ -closed is a $p^*g\alpha$ irresolute- cleavable over a class of spaces \mathcal{P} , then Y is strongly $p^*g\alpha$ -closed.

Proof :

Suppose $\{V_i\}_{i \in I}$ be any closed cover of Y , since X is $p^*g\alpha$ irresolute cleavable,

so there exists a $p^*g\alpha$ irresolute continuous mapping $f:X \rightarrow Y \in \mathcal{P}$, such that $f^{-1}f\{f^{-1}\{V_i\}_{i \in I}\} = f^{-1}\{V_i\}_{i \in I}$, since f is $p^*g\alpha$ irresolute -continuous , then $f^{-1}\{V_i\}_{i \in I}$ is a $p^*g\alpha$ -closed cover of X since X is strongly $p^*g\alpha$ -closed, so there exists a finite sub cover

$\{f^{-1}(V_1), \dots, f^{-1}(V_n)\}$ of X , such that $X \subset \bigcup_{i=1}^n \{f^{-1}(V_i)\}$,

since $ff^{-1}(V_i) = V_i$, So $\{V_1, \dots, V_n\}$ is a finite sub cover of Y . Then Y is strongly $p^*g\alpha$ -closed.

CONCLUSION

In this paper we have studied and proved these cases:

- 1) If \mathcal{P} is a class of ultra Hausdorff spaces with certain properties and if X is a contra- $p^*g\alpha$ - point wise cleavable over \mathcal{P} , then X is P- Hausdorff space, hence $X \notin \mathcal{P}$.
- 2) If \mathcal{P} is a class of ultra normal spaces with certain properties and if X is a closed contra- $p^*g\alpha$ absolutely cleavable over a class of spaces \mathcal{P} , then X is p- normal. Hence $X \notin \mathcal{P}$.
- 3) If \mathcal{P} is a class of $p^*g\alpha$ – connecte with certain properties and if X is a contra- $p^*g\alpha$ cleavable over a class of spaces \mathcal{P} , Then X is conncted . Hence $X \notin \mathcal{P}$.
- 4) If \mathcal{P} is a class of $p^*g\alpha$ –compact with certain properties and if X is a contra- $p^*g\alpha$ cleavable over a class of spaces \mathcal{P} , then Y is strongly $p^*g\alpha$ –closed or strongly S- closed . Hence $Y \notin \mathcal{P}$
- 5) If \mathcal{P} is a class of a strongly $p^*g\alpha$ -closed with certain properties and if X is $p^*g\alpha$ irresolute- cleavable over a class of spaces \mathcal{P} , Then X is strongly $p^*g\alpha$ –closed. Hence $X \in \mathcal{P}$.

REFERENCES

1. Arhangel'skii,A.V and Cammaroto,F ,On different types of cleavability of topological spaces , pointwise, closed ,open and pseudo open , Journal of Australian Math,Soc(1992).

2. J.Antony Rex Rodrigo and K.Dass, A new type of generalized closed sets, Internal J. Math Archive, 3(4) (2012) 1517 - 1523 .
3. J.Dontchev, Contra-continuous functions and strongly S-closed spaces, Internal. J. Math. Math. Sci., 19 (1996) 303-310
4. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 12 (1991) 5-13.
5. K.Geetha1 and M.Vigneshwaran ,On Contra $p^*g\alpha$ -Continuous Functions and Strongly $p^*g\alpha$ -Closed Spaces, Annals of Pure and Applied Mathematics Vol. 12, No. 2, 2016, 197-210
- 6-Staum,R. (1974). The algebra of bounded continuous functions into a non archimedean field, Pacific J. Math, 50 ,169-185.
7. M.Caldas and S.Jafari, Some properties of contra- $J\}$ -continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001) 19-28.