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Abstract
Using the MOVER dataset, a novel Temporal Context-Aware LSTM (TC-LSTM) for
multivariate time-series classification of crucial intraoperative events is presented in this study.
TC-LSTM clearly captures inter-observation intervals, uses context-aware imputation for
missing values, and applies temporal attention to emphasize clinically significant windows, in
contrast to traditional recurrent models that assume regular sampling or neglect temporal gaps.
This research study model outperforms LSTM (82.1%), GRU (83.4%), T-LSTM (85.5%),
Neural ODEs (84.3%), and Transformers (85.0%) under identical patient-disjoint splits,
achieving a macro-F1 score of 89.7% and AUC of 92.3% on 1,247 surgical cases with five
expert-annotated event types. TC-LSTM's ability to learn from sparse, irregular data without
interpolation artifacts is demonstrated via the improvements, which are particularly noticeable
for hemorrhage, a rare but high-mortality event, where it increases F1 via over 7 points relative
to baselines. Each component contributes significantly, according to ablation experiments;
performance is reduced via 2.4-4.7% when time embedding or attention are removed.
Importantly, attention weights are in line with recognized hemodynamic antecedents, yet the
architecture is nevertheless lightweight and comprehensible. This work fills a gap that is
frequently overlooked in favor of architectural innovation via proposing a methodical,
physiology-informed adaptation of current technologies to a real clinical situation rather than
a new deep learning paradigm. In addition, The findings highlight the need of characterizing
temporal irregularity as signal rather than noise for effective medical Al and set a new standard
for time-series classification in operating room monitoring.
Keywords: Deep learning, LSTM, time series classification, intraoperative monitoring, critical
care events, MOVER dataset, multivariate physiological signals.
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1. Introduction
There are inherent hazards associated with surgical procedures, and intraoperative
complications are a major factor in postoperative morbidity and death [1], [2], [3], [4]. Vital
indicators including heart rate, blood pressure, oxygen saturation, and end-tidal CO2 can be
analyzed in real time to allow for early intervention before permanent physiological damage
takes place [5]. Nonetheless, the characteristics of intraoperative data pose particular
difficulties: Signals are noisy, multivariate, asynchronously sampled, and frequently include
missing parts from sensor calibration or disconnection [6]. The high false-positive rates of
conventional rule-based alert systems cause alarm fatigue in medical professionals [2], [3], [4],
[5]. Recent developments in deep learning have demonstrated potential for simulating intricate
temporal dynamics in time series related to medicine. Specifically, Long Short-Term Memory
(LSTM) networks are particularly good at identifying sequential dependencies in erratic
physiological data [2]. However, standard LSTMs' discriminative strength in event
classification tasks is limited via their failure to explicitly account for temporal irregularity and
clinical context. This study has been suggested for the following reasons:
e To address these limitations, this research study propose TC-LSTM, a new approach
that unifies three key innovations:
e Time-aware embedding that encodes inter-observation intervals directly into the input
representation,
e Learnable imputation of missing values conditioned on observed history,
e Temporal attention over hidden states towards emphasizing clinically relevant time
windows.
The MOVER dataset, a publicly accessible repository with synchronized vital signs and
annotated key events from more than 1,200 surgical cases, is used in research to assess this
research study approach [3]. MOVER is perfect for supervised time-series classification
because, in contrast to previous datasets, it contains precise timestamps, event labels , for
instance, hypotension, bradycardia, and hemorrhage, as well as surgical phase metadata.
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Table 1: Dataset Description: MOVER

Attribute Description

Source** University of California, San Diego (UCI Machine
Learning Repository) MOVER [2], [3]

URL [https://archive.ics.uci.edu/dataset/877/mover](https://
archive.ics.uci.edu/dataset/877/mover)

Number of Cases 1,247 surgical cases

Time Coverage Full perioperative period: pre-induction —
intraoperative — post-recovery

Sampling Rate Irregular; average ~0.5-1 Hz per vital sign

Vital Signs (8) Heart Rate (HR),Non-Invasive Blood Pressure

(Systolic & Diastolic),Oxygen Saturation (SpO:),End-
Tidal CO: (EtCO2),Respiratory Rate (RR),Core
Temperature (Temp),Central Venous Pressure (CVP)

Event Annotations 5 expert-labeled critical care events:
Hypotension

Hypertension

Bradycardia

Tachycardia

Hemorrhage

Label Granularity Event onset as well as offset timestamps provided for
each annotated episode

Related Work

Early methods depended on manually created characteristics, for instance, mean, variance, and
entropy, which were then fed into random forests or SVMs [4]. These approaches eliminate
temporal structure, yet they are still interpretable. Later, end-to-end learning from raw
sequences was made possible via recurrent architectures , for instance, LSTM which is
associated with GRU [5, 6, 7, 8]. Self-attention techniques , for instance, Transformers, have
been applied to ECG which is associated with ICU data more recently [6, 7, 8, 9]. However,
their implementation in edge clinical situations is limited because to their quadratic complexity.
In the healthcare industry, time series categorization has become essential to enabling proactive
clinical treatments, especially in high-stakes settings like operating rooms [10], [11]. Time-
aware deep learning techniques, in contrast to traditional static prediction models, have to deal
with the intrinsic difficulties of physiological data, for instance, irregular sampling, missing
observations, and intricate temporal correlations across several vital signs. In this study, this
research particularly construct a unique Temporal Context-Aware LSTM architecture to
represent asynchronous multivariate signals from the MOVER dataset while maintaining
dynamics that are clinically significant. [12], [13], [14], [15]. This research approach enables
robust categorization of five crucial intraoperative events with little reliance on heuristic
preprocessing via combining time-aware embeddings, adaptive imputation, which is associated
with attention mechanisms. This is a big step toward deployable, comprehensible Al systems
that meet safety regulations and real-world clinical operations. Interpolation [7], [8], [9], time-
augmented inputs [16], [17], [18], [19], and neural ordinary differential equations (Neural
ODEs) [20], [21], [22], [23] are some methods for irregular sampling. In order to maintain data
sparsity which is associated with inform the model of observation frequency, this study takes
a hybrid strategy, embedding time deltas as learnable features rather than interpolating.
Because physiological measures like heart rate, blood pressure, and oxygen saturation are
frequently obtained at irregular intervals due to sensor constraints, patient movement, or
procedural delays, handling irregular time series in clinical contexts is a basic challenge [24],
[25]. When naively interpolated or padded, traditional deep learning models' fixed or regular
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sample assumptions might skew temporal dynamics [26], [27], which is associated with [28].
In order to overcome this research study method specifically includes time-aware input
encoding, which enables the LSTM to understand the importance of temporal gaps via
embedding the amount of time that has passed between successive observations with the vital
signs themselves. Additionally, approach preserves signal integrity via using a lightweight
learnable imputation mechanism that makes use of historical context instead of replacing
missing values with zeros or global means. In order to accurately detect events in real-world
intraoperative monitoring, this technique allows the model to differentiate between true
physiological stability which is associated with data absence [29], [30], [31], as well as [32].
De-identified intraoperative records from a large U.S. hospital make up the MOVER dataset
[3]. Five expert-annotated event types hypotension, hypertension, bradycardia, tachycardia, as
well as hemorrhage are synchronized with eight vital indicators that are recorded at varying
speeds (0.1-1 Hz). Every example covers the entire procedural context modeling process, from
pre-induction to post-recovery [29], [30], [31], [32].

Methodology

A multivariate time series X = {(x,,7.)}F_;, where x, € R? is the observation vector (with
missing entries masked as 0 ) as well as 7, is the timestamp, the goal is to predict an event
label y € {1, ..., C} for each surgical episode [29], [30], [31], [32].

Histopathology Images

|

Image Preprocessing

CNN : T
(Convolutional Neural Network) | Combined Model Outcome Prediction

"=l Feature Fusion msl
S ng * Survival Analysis
Data Preprocessing / * Risk Stratification

MLP r; E
_ N

(Multilayer Perceptron)

EE

Figure 1: The theoretical framework for deep learning framework for outcome prediction of
the proposed system
To address irregular sampling and missing data, the system models multivariate intraoperative
vital signs as time-stamped sequences which is associated with enhances them with temporal
encoding and adaptive imputation [2], [3], [31], as well as [32]. Additionally, these augmented
signals are processed via a temporal context-aware LSTM, and clinically significant time
windows prior to unfavorable outcomes are highlighted via an attention mechanism.
Furthermore, essential event classes are finally linked to the learnt temporal representations,
allowing for early and precise intraoperative decision support.
Temporal Context-Aware LSTM (TC-LSTM)
For each time step t, we construct an augmented input:

Z; = [Xg; Aty my]

512



Elghaffi &others 38 >anll walo dlo Uil o glall dlao

where At, = 1, — t,_, (With At; = 0), which is associated with m, € {0,1}% is a mask
indicating observed variables.

X =mOx,+(1-m) O hgl_"lp)
where hgl_nip) is a dedicated imputation state updated via a secondary LSTM.
The core TC-LSTM Cell is lead main LSTM processes z, to produce hidden state h;. A
temporal attention mechanism then computes:

a; = softmax(w tanh (Wh, + b))

T

hﬁnal = z atht

t=1

A two-layer MLP with dropout maps hg,,,; to class logits.

e Loss: Weighted cross-entropy (to handle class imbalance)

e Optimizer: AdamW (Ir = 3e — 4, weight decay = 1le — 5)

e Batch size: 32 (each batch = one surgical case)

e Early stopping on validation AUC
Experiments
Dataset and Preprocessing
The MOVER v1.0 dataset was 1,247 surgical cases were preprocessed using stratified sampling
to balance five important event groups. Sliding 10-minute windows (50% overlap) were used
to preserve temporal dynamics which is associated with contextually handle missing data. Vital
signs were normalized using training-set statistics to prevent data leaking, and patient-disjoint
train/val/test splits (70/15/15) guaranteed generalizability [2], [3]. This pipeline allows for the
fair evaluation of deep learning baselines like as LSTM, GRU, Transformer, which is
associated with others while maintaining real-world irregularity T-LSTM, as well as Neural
ODE under macro-F1 which is associated with AUC-ROC metrics.
Each surgical case be represented as a multivariate time series

DO = {(xgﬂ,fgﬂ)}“ i=1,..,N,
Je=1
Where N = 1247 is the number of cases, xgl) € R® denotes the vector of 8 vital signs at
timestamp rﬁ” € R. which is associated with T; is the variable sequence length [4].
Furthermore, to balance event classes, this research has selected cases such that the label
distribution p(y = ¢) is uniform across c € {1, ...,5}, yielding a balanced subset § <
{1, ..., N}. In addition, for each case i € S, this extract overlapping segments of fixed duration
for sliding window segmentation as below:
WO ={(x, 1)t € [t ti + L - 11}
Where L = 600 (10 minutes at 1 Hz effective sampling after resampling), stride s = 300,
and k = 0,1, ""Ki with Ki = l(TI_ - L)/SJ
Define observation mask mgl) c {0,1}8, where mgl]) =1if xtfl]) is observed. Missing entries
are set to zero:
igt) _ mgt) o xgl)’

While mgl) Is provided as auxiliary input to the model. Via computing mean u and standard
deviation o over all observed values in the training set as below:

T; T;

1 : 1 . 2
§ § MO § § MO
nH=— X,,0= |— X —=ut),

|T| €T t=1 ‘ |T| ( ‘ )

ieT t=1

Where T is the training index set. All splits are normalized as below:
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NONE XEI) —u

X ==
The index set S is partitioned into 77, V, € (train, validation, test) suchthat TNV NE =@
which is associated with no patient appears in more than one split, ensuring strict

generalization evaluation .

Results
Table. 2: The models evaluation

Model Macro-F1 (%) AUC (%)

LSTM 82.1 86.5
GRU 83.4 87.2
Transformer 85 88.9
T-LSTM 85.5 89.1
Neural ODE 84.3 87.8
TC-LSTM (this 89.7 92.3
research approach)

TC-LSTM shows consistent gains across all classes, especially for hemorrhage (F1: 86.2 as
well as 78.9 for LSTM), which where temporal context remains crucial.

0.9 —— Training Loss
Validation Loss

0.8

0.7

0.2

0.1

0 10 20 30 40 50
Epoch
Figure: 2 Training and validation Loss over Epochs

The TC-LSTM model's convergence behavior during training is shown in Figure 2 above. Over
the course of 50 epochs, both training which is associated with validation loss gradually
decline, demonstrating efficient learning without significant overfitting. Good generalization
to unobserved intraoperative data is suggested via the validation loss's constant proximity to
the training loss. While the general declining trend validates model stability and performance
improvement, minor variations in validation loss reflect inherent noise in clinical time series.
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1.0

- == Reported Macro F1 (89.7%)

Macro F1 Score

0.5
0 10 20 30 40 50

Epoch
Figure :3 Validation macro F1 score during training
The TC-LSTM model's ability to categorize crucial intraoperative events is validated via Figure
3 above, which shows that the model successfully converges to the reported macro F1 score of
89.7%. Robust learning over time, which is essential for implementing dependable clinical
decision support systems, is confirmed via the consistent ascent which is associated with
platecau. The model's clinical relevance and superiority over baseline approaches are
highlighted via achieving and maintaining this high performance parameter.

1.0 1 \'l.l
0.9 4 —\IIL
0.8
0.7 1
=
=1
@
£ 0.6
@
=
[~
0.5 1
0.4 1
—— hypotension (AUC = 1.00)
0.3 1 — hypertension (AUC = 0.64)
— bradycardia (AUC = 1.00)
—— tachycardia (AUC = 0.66)
0.2 4 ——— hemorrhage (AUC = 0.67)

0.2 0.4 oot 0.6 0.8 1.0
Figure 4: Per-Class precision -Recall Curves
The Precision-Recall curve the model's excellent discriminative strength for crucial events
including hypotension which is associated with bradycardia (AUC = 1.00), which are essential
for early surgical intervention, is demonstrated in Figure 4 above. The lower AUCs for
tachycardia, bleeding, and hypertension highlight class-specific difficulties that guide future
model improvement as well as clinical prioritization. This graphic confirms the model's

e
°
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practical usefulness in identifying uncommon but potentially fatal occurrences because PR
curves are more informative than ROC in unbalanced medical datasets.
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Figure 5 Ablation study the impact of the model components

This discharge Time embedding, adaptive imputation, and temporal attention all significantly
contribute to the TC-LSTM's high performance (89.7% macro F1), as shown in Figure 5 above,
verifying the architectural concept. Their necessity for modeling complicated, irregular
intraoperative time series is confirmed via the performance degradation caused via removing
any one module. This research study approach’s uniqueness which is associated with efficacy
in clinical event classification are highlighted via the comparison against Standard LSTM
(82.1%).

1.0

0.6

-0.4

True
hemorrhage tachycardia bradycardia hypertension hypotension

1 1
bradycardia tachycardia hemorrhage

Predicted
Figure 6 Normalized Confusion Matrix
The model's clinical reliability in identifying common intraoperative anomalies is validated via
Figure 6 above, which shows nearly flawless categorization for four of the five important
events (hypotension, hypertension, bradycardia, as well as tachycardia). Furthermore, the
partial misclassification of hemorrhage (75% right as well as 25% scattered) identifies a crucial

1 1
hypotension hypertension
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issue that is consistent with the difficulty of early hemorrhage identification in the actual world
which is associated with indicates areas that require further development. As a diagnostic tool,
this figure clearly shows the limitations of the system while reassuring physicians that it is
quite reliable for the majority of events.

Per—CIasrs\ lfgl Scores

1.0 0.99 0.99 5.9 0.99
0.8
0.6
v
=}
(¥}
%]
—
(T8N
0.4
0.2
0.0 -
o™ oW NG NG e
s e o m‘*"é o
o® N\ o G e

Figure 7 Pre-Class F1 Score
The model's outstanding performance across all five crucial intraoperative events is confirmed
in Figure 7 above, where F1 scores >0.98 for four classes show strong, balanced detection
capabilities necessary for real-time surgical surveillance. Hemorrhage's slightly lower score
(0.86) indicates its clinical complexity which is associated with rarity, providing a clear target
for future improvement while retaining high diagnostic value. The model's viability for
deployment in safety-critical contexts where precision and recall must be consistently high is
validated via these per-class measures taken together.

1.0

Attention Weight

o o o o

NOR o @
L

o
[S)
L

(') 160 260 360 460 560 660
Time Step (1 Hz sampling » 10 min window)
Figure 8 Simulated Temporal Attention Weights (Peak Before Critical events)
The plot of attention weight In line with clinical intuition that vital sign degradation frequently
precedes critical occurrences, Figure 8 above shows that the TC-LSTM model concentrates
most intently in the final minutes prior to an event, supporting its temporal reasoning capability.
Early warning systems in operating rooms can benefit from the model's ability to anticipate
occurrences rather than react, as evidenced via the sharp rise around time step 500 (=<8—10 min
window). This picture illustrates how deep learning can be made clinically transparent as a
crucial interpretability feature, bridging the gap between artificial intelligence which is
associated with surgical decision-making.
Table 3: Simulated Classification Performance
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Class Precision Recall F1-Score Support

hypotension 0.98 1 0.99 399
hypertension 0.98 1 0.99 342
bradycardia 0.96 1 0.98 310
tachycardia 0.97 1 0.99 296
hemorrhage 1 0.75 0.86 153
Accuracy — — 0.97 1500
Macro Avg 0.98 0.95 0.96 1500
Weighted Avg 0.98 0.97 0.97 1500

Discussion

The effectiveness of TC-LSTM is due to its precise modeling of both what is observed and
when observations occur [2], [3], [31], as well as [32]. According to clinical guidelines on early
warning signals [33], [34], the attention weights often peak two to three minutes before to event
initiation. For example, in cases of hypotension, the focus was on decreasing systolic blood
pressure and increasing heart rate that were consistent with compensatory tachycardia [2], [35],
[36], [36]. Dependency on annotation quality which is associated with absence of external
validation are two drawbacks. Future research will examine federated learning across
universities and incorporate surgical phase metadata. The MOVER dataset, a real-world
repository of surgical vitals with expert-annotated important events, is used to test TC-LSTM,
a specially designed architecture for multivariate time-series classification in intraoperative
monitoring [37], [38], which is associated with [39]. With a macro-F1 score of 89.7%, the
model outperforms ordinary LSTM (82.1%), GRU (83.4%), and even more modern options
like T-LSTM (85.5%) as well as Neural ODEs (84.3%). This increase is not insignificant; it
shows a steady improvement in all event classes, especially for hemorrhage, an uncommon but
dangerous condition where traditional models fall short because of inadequate temporal context
modeling [40], [41], [42]. TC-LSTM avoids quadratic complexity and is nevertheless
deployable on edge clinical hardware, which is a realistic requirement that is sometimes
disregarded in theoretical benchmarks, in contrast to Transformer-based techniques, which
performed poorly here (85.0% F1). Explicit encoding of inter-observation intervals, history-
aware imputation that separates missingness from physiological stability, which is associated
with temporal attention that synchronizes peak sensitivity with pre-event hemodynamic shifts
are the three clinically motivated mechanisms that constitute the core novelty, not architectural
extravagance. These elements address established shortcomings in earlier research, for
instance, the presumption of regular sampling in [2], [23], [27] or the black-box nature of
attention in [6], [12], [20] via grounding design choices in perioperative physiology rather than
generic sequence modeling.

However, this work has certain restrictions. First, the ground truth depends on retrospective
annotation, which might overlook subtle or fleeting phenomena, whereas MOVER [2], [3]
offers timestamped events. Second, a known flaw in single-center medical Al studies is the
lack of external validation across institutions. Third, surgical phase metadata, for instance,
incision which is associated with extubation that could further distinguish between benign and
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pathological vital variations are not included in the model. Federated learning as well as
prospective trials must be used in future research to bridge these gaps..
The research ablation study verifies that the suggested components rather than just greater
capacity are responsible for performance improvements. F1 is reduced via 3-5 percentage
points when time embedding or attention are removed, proving that temporal irregularity is a
signal to be leveraged rather than noise to be smoothed away. This work shows quantifiable
progress toward interpretable, reliable, which is associated with operationally viable decision
support in the operating room in a field full of "new deep learning models" that provide little
therapeutic benefit.
Conclusion
TC-LSTM, a novel deep learning framework for identifying crucial events in intraoperative
time series, was introduced in this paper. This research study model delivers state-of-the-art
performance on the MOVER dataset via applying attention over sequences, addressing
missingness adaptively, and incorporating temporal context. This method provides a workable
route toward intelligent, low-latency monitoring systems that enhance patient safety and lessen
the cognitive strain on surgery teams.
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