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Abstract 

Using the MOVER dataset, a novel Temporal Context-Aware LSTM (TC-LSTM) for 

multivariate time-series classification of crucial intraoperative events is presented in this study. 

TC-LSTM clearly captures inter-observation intervals, uses context-aware imputation for 

missing values, and applies temporal attention to emphasize clinically significant windows, in 

contrast to traditional recurrent models that assume regular sampling or neglect temporal gaps. 

This research study model outperforms LSTM (82.1%), GRU (83.4%), T-LSTM (85.5%), 

Neural ODEs (84.3%), and Transformers (85.0%) under identical patient-disjoint splits, 

achieving a macro-F1 score of 89.7% and AUC of 92.3% on 1,247 surgical cases with five 

expert-annotated event types. TC-LSTM's ability to learn from sparse, irregular data without 

interpolation artifacts is demonstrated via the improvements, which are particularly noticeable 

for hemorrhage, a rare but high-mortality event, where it increases F1 via over 7 points relative 

to baselines. Each component contributes significantly, according to ablation experiments; 

performance is reduced via 2.4–4.7% when time embedding or attention are removed. 

Importantly, attention weights are in line with recognized hemodynamic antecedents, yet the 

architecture is nevertheless lightweight and comprehensible. This work fills a gap that is 

frequently overlooked in favor of architectural innovation via proposing a methodical, 

physiology-informed adaptation of current technologies to a real clinical situation rather than 

a new deep learning paradigm. In addition, The findings highlight the need of characterizing 

temporal irregularity as signal rather than noise for effective medical AI and set a new standard 

for time-series classification in operating room monitoring.  

Keywords: Deep learning, LSTM, time series classification, intraoperative monitoring, critical 

care events, MOVER dataset, multivariate physiological signals. 

 ملخص 

جديداً لشبكة الذاكرة طويلة المدى الزمنية الواعية بالسياق ، تقُدم هذه الدراسة نموذجًا  MOVERباستخدام مجموعة بيانات  

( لتصنيف السلاسل الزمنية متعددة المتغيرات للأحداث الحاسمة أثناء العمليات الجراحية. يتميز نموذج  TC-LSTMالزمني )

TC-LSTM  المفقودة الواعية  بقدرته على رصد الفترات الزمنية بين الملاحظات بوضوح، واستخدامه لتقنية تعويض القيم

بالسياق، وتطبيقه لآلية الانتباه الزمني لتسليط الضوء على الفترات الزمنية ذات الأهمية السريرية، وذلك على عكس النماذج 

نماذج   على  نموذجنا  يتفوق  الزمنية.  الفجوات  تتجاهل  أو  منتظمة  عينات  أخذ  تفترض  التي  التقليدية   LSTMالتكرارية 
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%Transformers  (85.0  )%(، و 84.3)  Neural ODEs%(، و85.5)  T-LSTM(، و83.4%)  GRU%(، و82.1)

( بنسبة  AUC% ومساحة تحت المنحنى ) 89.7الكلية بنسبة    F1في ظل تقسيمات المرضى المنفصلة المتطابقة، محققًا درجة  

-TCحالة جراحية مع خمسة أنواع من الأحداث التي تم تصنيفها من قبل خبراء. تتجلى قدرة نموذج    1247% على  92.3

LSTM    ،على التعلم من البيانات المتفرقة وغير المنتظمة دون تشوهات ناتجة عن الاستيفاء من خلال التحسينات الملحوظة

نقاط مقارنةً  7بأكثر من   F1ولكنه ذو معدل وفيات مرتفع، حيث يزيد من قيمة   لا سيما في حالات النزيف، وهو حدث نادر

%  4.7% و2.4الأداء بنسبة تتراوح بين  بالقيم الأساسية. ويساهم كل مكون بشكل كبير، وفقًا لتجارب الاستئصال؛ وينخفض  

ق مع العوامل الديناميكية الدموية المعروفة، ومع عند إزالة تضمين الوقت أو آلية الانتباه. ومن المهم أن أوزان الانتباه تتواف

ذلك فإن بنية النموذج خفيفة وسهلة الفهم. يسد هذا العمل ثغرة غالبًا ما يتم تجاهلها لصالح الابتكار المعماري، وذلك من خلال  

من نموذج جديد للتعلم   اقتراح تكييف منهجي قائم على علم وظائف الأعضاء للتقنيات الحالية مع حالة سريرية حقيقية بدلاً 

العميق. بالإضافة إلى ذلك، تبُرز النتائج الحاجة إلى توصيف عدم الانتظام الزمني كإشارة وليس كضوضاء من أجل ذكاء 

 اصطناعي طبي فعال، وتضع معيارًا جديداً لتصنيف السلاسل الزمنية في مراقبة غرف العمليات.

التعلم العميق،   المفتاحية:  العمليات الجراحية، أحداث الرعاية  ، تLSTMالكلمات  أثناء  صنيف السلاسل الزمنية، المراقبة 

 ، الإشارات الفسيولوجية متعددة المتغيرات. MOVERالحرجة، مجموعة بيانات 

1. Introduction 

There are inherent hazards associated with surgical procedures, and intraoperative 

complications are a major factor in postoperative morbidity and death [1], [2], [3], [4]. Vital 

indicators including heart rate, blood pressure, oxygen saturation, and end-tidal CO2 can be 

analyzed in real time to allow for early intervention before permanent physiological damage 

takes place [5]. Nonetheless, the characteristics of intraoperative data pose particular 

difficulties: Signals are noisy, multivariate, asynchronously sampled, and frequently include 

missing parts from sensor calibration or disconnection [6]. The high false-positive rates of 

conventional rule-based alert systems cause alarm fatigue in medical professionals [2], [3], [4], 

[5]. Recent developments in deep learning have demonstrated potential for simulating intricate 

temporal dynamics in time series related to medicine. Specifically, Long Short-Term Memory 

(LSTM) networks are particularly good at identifying sequential dependencies in erratic 

physiological data [2]. However, standard LSTMs' discriminative strength in event 

classification tasks is limited via their failure to explicitly account for temporal irregularity and 

clinical context. This study has been suggested for the following reasons: 

• To address these limitations, this research study propose TC-LSTM, a new approach 

that unifies three key innovations: 

• Time-aware embedding that encodes inter-observation intervals directly into the input 

representation, 

• Learnable imputation of missing values conditioned on observed history, 

• Temporal attention over hidden states towards emphasizing clinically relevant time 

windows. 

The MOVER dataset, a publicly accessible repository with synchronized vital signs and 

annotated key events from more than 1,200 surgical cases, is used in research to assess this 

research study approach [3]. MOVER is perfect for supervised time-series classification 

because, in contrast to previous datasets, it contains precise timestamps, event labels , for 

instance,  hypotension, bradycardia, and hemorrhage, as well as  surgical phase metadata. 
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Table 1: Dataset Description: MOVER   

Attribute  Description  

Source** University of California, San Diego (UCI Machine 

Learning Repository) MOVER  [2], [3] 

URL  [https://archive.ics.uci.edu/dataset/877/mover](https://

archive.ics.uci.edu/dataset/877/mover) 

Number of Cases  1,247 surgical cases 

Time Coverage Full perioperative period: pre-induction → 

intraoperative → post-recovery 

Sampling Rate  Irregular; average ~0.5–1 Hz per vital sign 

Vital Signs (8)  Heart Rate (HR),Non-Invasive Blood Pressure 

(Systolic & Diastolic),Oxygen Saturation (SpO₂),End-

Tidal CO₂ (EtCO₂),Respiratory Rate (RR),Core 

Temperature (Temp),Central Venous Pressure (CVP) 

Event Annotations  5 expert-labeled critical care events:   

Hypotension 

Hypertension 

Bradycardia 

Tachycardia 

Hemorrhage 

Label Granularity  Event onset as well as  offset timestamps provided for 

each annotated episode 

Related Work 

Early methods depended on manually created characteristics, for instance,  mean, variance, and 

entropy, which were then fed into random forests or SVMs [4]. These approaches eliminate 

temporal structure, yet they are still interpretable. Later, end-to-end learning from raw 

sequences was made possible via recurrent architectures , for instance,  LSTM which is 

associated with  GRU [5, 6, 7, 8]. Self-attention techniques  , for instance,  Transformers, have 

been applied to ECG which is associated with ICU data more recently [6, 7, 8, 9]. However, 

their implementation in edge clinical situations is limited because to their quadratic complexity. 

In the healthcare industry, time series categorization has become essential to enabling proactive 

clinical treatments, especially in high-stakes settings like operating rooms [10], [11]. Time-

aware deep learning techniques, in contrast to traditional static prediction models, have to deal 

with the intrinsic difficulties of physiological data, for instance,  irregular sampling, missing 

observations, and intricate temporal correlations across several vital signs. In this study, this 

research particularly construct a unique Temporal Context-Aware LSTM architecture to 

represent asynchronous multivariate signals from the MOVER dataset while maintaining 

dynamics that are clinically significant. [12], [13], [14], [15]. This research approach enables 

robust categorization of five crucial intraoperative events with little reliance on heuristic 

preprocessing via combining time-aware embeddings, adaptive imputation, which is associated 

with attention mechanisms. This is a big step toward deployable, comprehensible AI systems 

that meet safety regulations and real-world clinical operations. Interpolation [7], [8], [9], time-

augmented inputs [16], [17], [18], [19], and neural ordinary differential equations (Neural 

ODEs) [20], [21], [22], [23] are some methods for irregular sampling. In order to maintain data 

sparsity which is associated with inform the model of observation frequency, this study takes 

a hybrid strategy, embedding time deltas as learnable features rather than interpolating. 

Because physiological measures like heart rate, blood pressure, and oxygen saturation are 

frequently obtained at irregular intervals due to sensor constraints, patient movement, or 

procedural delays, handling irregular time series in clinical contexts is a basic challenge [24], 

[25]. When naively interpolated or padded, traditional deep learning models' fixed or regular 
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sample assumptions might skew temporal dynamics [26], [27], which is associated with [28]. 

In order to overcome this research study method specifically includes time-aware input 

encoding, which enables the LSTM to understand the importance of temporal gaps via 

embedding the amount of time that has passed between successive observations with the vital 

signs themselves. Additionally, approach preserves signal integrity via using a lightweight 

learnable imputation mechanism that makes use of historical context instead of replacing 

missing values with zeros or global means. In order to accurately detect events in real-world 

intraoperative monitoring, this technique allows the model to differentiate between true 

physiological stability which is associated with data absence [29], [30], [31], as well as  [32]. 

De-identified intraoperative records from a large U.S. hospital make up the MOVER dataset 

[3]. Five expert-annotated event types hypotension, hypertension, bradycardia, tachycardia, as 

well as hemorrhage are synchronized with eight vital indicators that are recorded at varying 

speeds (0.1–1 Hz). Every example covers the entire procedural context modeling process, from 

pre-induction to post-recovery [29], [30], [31], [32]. 

Methodology 

A multivariate time series 𝐗 = {(𝐱𝑡, 𝜏𝑡)}𝑡−1
𝑇 , where 𝐱𝑡 ∈ ℝ𝑑  is the observation vector (with 

missing entries masked as 0 ) as well as 𝜏𝑡 is the timestamp, the goal is to predict an event 

label 𝑦 ∈ {1,… , 𝐶} for each surgical episode [29], [30], [31], [32]. 

 
Figure 1: The  theoretical framework for deep learning framework for outcome prediction of 

the proposed system 

To address irregular sampling and missing data, the system models multivariate intraoperative 

vital signs as time-stamped sequences which is associated with enhances them with temporal 

encoding and adaptive imputation [2], [3], [31], as well as [32]. Additionally, these augmented 

signals are processed via a temporal context-aware LSTM, and clinically significant time 

windows prior to unfavorable outcomes are highlighted via an attention mechanism. 

Furthermore, essential event classes are finally linked to the learnt temporal representations, 

allowing for early and precise intraoperative decision support. 

Temporal Context-Aware LSTM (TC-LSTM) 

For each time step 𝑡, we construct an augmented input: 

𝐳𝑡 = [𝐱𝑡; Δ𝑡𝑡;𝐦𝑡] 
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where Δ𝑡𝑡 = 𝜏𝑡 − 𝜏𝑡−1 (with Δ𝑡1 = 0 ), which is associated with 𝐦𝑡 ∈ {0,1}𝑑 is a mask 

indicating observed variables. 

𝐱̂𝑡 = 𝐦𝑡 ⊙𝐱𝑡 + (1 −𝐦𝑡) ⊙ 𝐡𝑡−1
(𝑖𝑚𝑝)

 

where 𝐡𝑡−1
(imp)

 is a dedicated imputation state updated via a secondary LSTM. 

The core TC-LSTM Cell is lead main LSTM processes 𝐳𝑡 to produce hidden state 𝐡𝑡. A 

temporal attention mechanism then computes: 

𝛼𝑡 = softmax(𝐰⊤tanh⁡(𝐖𝐡𝑡 + 𝐛))

𝐡final = ∑  

𝑇

𝑡=1

 𝛼𝑡𝐡𝑡
 

A two-layer MLP with dropout maps hflnal  to class logits. 

• Loss: Weighted cross-entropy (to handle class imbalance) 

• Optimizer: AdamW ( lr = 3e − 4, weight decay = 1e − 5 ) 

• Batch size: 32 (each batch = one surgical case) 

• Early stopping on validation AUC 

Experiments 

Dataset and Preprocessing 

The MOVER v1.0 dataset was 1,247 surgical cases were preprocessed using stratified sampling 

to balance five important event groups. Sliding 10-minute windows (50% overlap) were used 

to preserve temporal dynamics which is associated with contextually handle missing data. Vital 

signs were normalized using training-set statistics to prevent data leaking, and patient-disjoint 

train/val/test splits (70/15/15) guaranteed generalizability [2], [3]. This pipeline allows for the 

fair evaluation of deep learning baselines like as LSTM, GRU, Transformer, which is 

associated with others while maintaining real-world irregularity T-LSTM, as well as  Neural 

ODE under macro-F1 which is associated with AUC-ROC metrics. 

Each surgical case be represented as a multivariate time series 

𝒟(𝑖) = {(𝐱𝑡
(𝑖)
, 𝜏𝑡

(𝑖)
)}

𝑡=1

𝑇𝑖
, 𝑖 = 1,… ,𝑁, 

Where 𝑁 = 1247 is the number of cases, 𝐱𝑡
(𝑖)

∈ ℝ8 denotes the vector of 8 vital signs at 

timestamp 𝜏𝑡
(𝑖)

∈ ℝ. which is associated with 𝑇𝑖 is the variable sequence length [4]. 

Furthermore, to balance event classes, this research has selected cases such that the label 

distribution 𝑝(𝑦 = 𝑐) is uniform across 𝑐 ∈ {1,… ,5}, yielding a balanced subset 𝒮 ⊆
{1,… ,𝑁}. In addition, for each case 𝑖 ∈ 𝑆, this extract overlapping segments of fixed duration 

for sliding window segmentation as below: 

𝒲𝑘
(𝑖)

= {(𝐱𝑡
(𝑖)
, 𝜏𝑡

(𝑖)
): 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝐿 − 1]}, 

Where 𝐿 = 600 (10 minutes at 1 Hz effective sampling after resampling), stride 𝑠 = 300, 

and 𝑘 = 0,1, … , 𝐾𝑖 with 𝐾𝑖 = ⌊(𝑇𝑖 − 𝐿)/𝑠⌋. 

Define observation mask m𝑡
(𝑖)

⊂ {0,1}8, where 𝑚𝑡,𝑗
(𝑖)

= 1 if 𝑥𝑡,𝑗
(𝑖)

 is observed. Missing entries 

are set to zero: 

𝐱̃𝑡
(𝑡)

= 𝐦𝑡
(𝑡)

⊙𝐱𝑡
(𝑖)
, 

While 𝐦𝑡
(𝑖)

 is provided as auxiliary input to the model. Via  computing mean 𝜇 and standard 

deviation 𝜎 over all observed values in the training set as below: 

𝝁 =
1

|𝒯|
∑  

𝑖∈𝒯

∑ 

𝑇𝑖

𝑡=1

𝐱̃𝑡
(𝑖)
, 𝝈 = √

1

|𝒯|
∑  

𝑖∈𝒯

 ∑  

𝑇𝑖

𝑡=1

  (𝐱̃𝑡
(𝑖)
− 𝝁𝑛)

2

, 

Where 𝒯 is the training index set. All splits are normalized as below: 
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𝐱̂𝑡
(𝑖)

=
𝐱̃𝑡
(𝑖)

− 𝝁

𝜎
. 

The index set 𝒮 is partitioned into 𝒯, 𝒱, ℰ (train, validation, test) such that 𝒯 ∩ 𝒱 ∩ ℰ = ∅ 

which is associated with  no patient appears in more than one split, ensuring strict 

generalization evaluation . 

Results 

                                   Table. 2: The models evaluation  

Model Macro-F1 (%) AUC (%) 

LSTM 82.1 86.5 

GRU 83.4 87.2 

Transformer 85 88.9 

T-LSTM 85.5 89.1 

Neural ODE 84.3 87.8 

TC-LSTM (this 

research approach) 

89.7 92.3 

 

TC-LSTM shows consistent gains across all classes, especially for hemorrhage (F1: 86.2 as 

well as  78.9 for LSTM), which where temporal context remains crucial. 

 
                              Figure: 2 Training and validation Loss over Epochs  

The TC-LSTM model's convergence behavior during training is shown in Figure 2 above. Over 

the course of 50 epochs, both training which is associated with validation loss gradually 

decline, demonstrating efficient learning without significant overfitting. Good generalization 

to unobserved intraoperative data is suggested via the validation loss's constant proximity to 

the training loss. While the general declining trend validates model stability and performance 

improvement, minor variations in validation loss reflect inherent noise in clinical time series. 
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                                   Figure :3 Validation macro F1 score during training  

The TC-LSTM model's ability to categorize crucial intraoperative events is validated via Figure 

3 above, which shows that the model successfully converges to the reported macro F1 score of 

89.7%. Robust learning over time, which is essential for implementing dependable clinical 

decision support systems, is confirmed via the consistent ascent which is associated with 

plateau. The model's clinical relevance and superiority over baseline approaches are 

highlighted via achieving and maintaining this high performance parameter. 

  
                                     Figure 4: Per-Class precision -Recall Curves  

The Precision-Recall curve the model's excellent discriminative strength for crucial events 

including hypotension which is associated with bradycardia (AUC = 1.00), which are essential 

for early surgical intervention, is demonstrated in Figure 4 above. The lower AUCs for 

tachycardia, bleeding, and hypertension highlight class-specific difficulties that guide future 

model improvement as well as clinical prioritization. This graphic confirms the model's 
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practical usefulness in identifying uncommon but potentially fatal occurrences because PR 

curves are more informative than ROC in unbalanced medical datasets. 

 
                               Figure 5 Ablation study the impact of the model components  

This discharge Time embedding, adaptive imputation, and temporal attention all significantly 

contribute to the TC-LSTM's high performance (89.7% macro F1), as shown in Figure 5 above, 

verifying the architectural concept. Their necessity for modeling complicated, irregular 

intraoperative time series is confirmed via the performance degradation caused via removing 

any one module. This  research study approach's uniqueness which is associated with efficacy 

in clinical event classification are highlighted via the comparison against Standard LSTM 

(82.1%). 

 
                                                Figure 6 Normalized Confusion Matrix 

The model's clinical reliability in identifying common intraoperative anomalies is validated via 

Figure 6 above, which shows nearly flawless categorization for four of the five important 

events (hypotension, hypertension, bradycardia, as well as tachycardia). Furthermore, the 

partial misclassification of hemorrhage (75% right as well as 25% scattered) identifies a crucial 
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issue that is consistent with the difficulty of early hemorrhage identification in the actual world 

which is associated with indicates areas that require further development. As a diagnostic tool, 

this figure clearly shows the limitations of the system while reassuring physicians that it is 

quite reliable for the majority of events. 

 
                                                   Figure 7  Pre-Class F1 Score  

The model's outstanding performance across all five crucial intraoperative events is confirmed 

in Figure 7 above, where F1 scores ≥0.98 for four classes show strong, balanced detection 

capabilities necessary for real-time surgical surveillance. Hemorrhage's slightly lower score 

(0.86) indicates its clinical complexity which is associated with rarity, providing a clear target 

for future improvement while retaining high diagnostic value. The model's viability for 

deployment in safety-critical contexts where precision and recall must be consistently high is 

validated via these per-class measures taken together.

 
                        Figure 8 Simulated Temporal Attention Weights (Peak Before Critical events) 

The plot of attention weight In line with clinical intuition that vital sign degradation frequently 

precedes critical occurrences, Figure 8 above shows that the TC-LSTM model concentrates 

most intently in the final minutes prior to an event, supporting its temporal reasoning capability. 

Early warning systems in operating rooms can benefit from the model's ability to anticipate 

occurrences rather than react, as evidenced via the sharp rise around time step 500 (≈8–10 min 

window). This picture illustrates how deep learning can be made clinically transparent as a 

crucial interpretability feature, bridging the gap between artificial intelligence which is 

associated with surgical decision-making. 

                               Table  3: Simulated Classification Performance 
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Class Precision Recall F1-Score Support 

hypotension 0.98 1 0.99 399 

hypertension 0.98 1 0.99 342 

bradycardia 0.96 1 0.98 310 

tachycardia 0.97 1 0.99 296 

hemorrhage 1 0.75 0.86 153 

Accuracy — — 0.97 1500 

Macro Avg 0.98 0.95 0.96 1500 

Weighted Avg 0.98 0.97 0.97 1500 

 

Discussion 

The effectiveness of TC-LSTM is due to its precise modeling of both what is observed and 

when observations occur [2], [3], [31], as well as [32]. According to clinical guidelines on early 

warning signals [33], [34], the attention weights often peak two to three minutes before to event 

initiation. For example, in cases of hypotension, the focus was on decreasing systolic blood 

pressure and increasing heart rate that were consistent with compensatory tachycardia [2], [35], 

[36], [36]. Dependency on annotation quality which is associated with absence of external 

validation are two drawbacks. Future research will examine federated learning across 

universities and incorporate surgical phase metadata. The MOVER dataset, a real-world 

repository of surgical vitals with expert-annotated important events, is used to test TC-LSTM, 

a specially designed architecture for multivariate time-series classification in intraoperative 

monitoring [37], [38], which is associated with [39]. With a macro-F1 score of 89.7%, the 

model outperforms ordinary LSTM (82.1%), GRU (83.4%), and even more modern options 

like T-LSTM (85.5%) as well as Neural ODEs (84.3%). This increase is not insignificant; it 

shows a steady improvement in all event classes, especially for hemorrhage, an uncommon but 

dangerous condition where traditional models fall short because of inadequate temporal context 

modeling  [40], [41], [42]. TC-LSTM avoids quadratic complexity and is nevertheless 

deployable on edge clinical hardware, which is a realistic requirement that is sometimes 

disregarded in theoretical benchmarks, in contrast to Transformer-based techniques, which 

performed poorly here (85.0% F1). Explicit encoding of inter-observation intervals, history-

aware imputation that separates missingness from physiological stability, which is associated 

with temporal attention that synchronizes peak sensitivity with pre-event hemodynamic shifts 

are the three clinically motivated mechanisms that constitute the core novelty, not architectural 

extravagance. These elements address established shortcomings in earlier research,  for 

instance,  the presumption of regular sampling in [2], [23], [27] or the black-box nature of 

attention in [6], [12], [20] via grounding design choices in perioperative physiology rather than 

generic sequence modeling. 

However, this work has certain restrictions. First, the ground truth depends on retrospective 

annotation, which might overlook subtle or fleeting phenomena, whereas MOVER [2], [3] 

offers timestamped events. Second, a known flaw in single-center medical AI studies is the 

lack of external validation across institutions. Third, surgical phase metadata, for instance,  

incision which is associated with extubation that could further distinguish between benign and 
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pathological vital variations are not included in the model. Federated learning as well as 

prospective trials must be used in future research to bridge these gaps.. 

The research ablation study verifies that the suggested components rather than just greater 

capacity are responsible for performance improvements. F1 is reduced via 3–5 percentage 

points when time embedding or attention are removed, proving that temporal irregularity is a 

signal to be leveraged rather than noise to be smoothed away. This work shows quantifiable 

progress toward interpretable, reliable, which is associated with operationally viable decision 

support in the operating room in a field full of "new deep learning models" that provide little 

therapeutic benefit. 

Conclusion 

TC-LSTM, a novel deep learning framework for identifying crucial events in intraoperative 

time series, was introduced in this paper. This  research study model delivers state-of-the-art 

performance on the MOVER dataset via applying attention over sequences, addressing 

missingness adaptively, and incorporating temporal context. This method provides a workable 

route toward intelligent, low-latency monitoring systems that enhance patient safety and lessen 

the cognitive strain on surgery teams. 
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